
A few constructive approaches to optimal first-order

optimization methods for convex optimization

Adrien Taylor

All Russian optimization seminar – May 2021

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

1

https://francisbach.com/computer-aided-analyses/
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:

’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods
via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:

’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual
interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:

� Fair amount of algorithmic analyses (and design) originated from SDPs (from
different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

Genealogy on this topic (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods

via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

’20-’21 Drori & T.: design of optimal methods via minimax

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later),
incomplete references in this presentation.

2

François
Glineur

Julien
Hendrickx

Etienne
de Klerk

Ernest
Ryu

Yoel
Drori

Francis
Bach

Jérôme
Bolte

Alexandre
d’Aspremont

Mathieu
Barré

Radu-Alexandru
Dragomir

Bryan
Van Scoy

Laurent
Lessard

Carolina
Bergeling

Pontus
Giselsson

3

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

4

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

4

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

4

Performance estimation problems

Designing methods using PEPs

Conclusions

5

Performance estimation problems

Designing methods using PEPs

Conclusions

6

Analysis of a gradient method

Say we aim to solve

min
x∈Rd

f (x)

under some assumptions on f (it belongs to some class of functions).

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?

7

Analysis of a gradient method

Say we aim to solve

min
x∈Rd

f (x)

under some assumptions on f (it belongs to some class of functions).

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?

7

Analysis of a gradient method

Say we aim to solve

min
x∈Rd

f (x)

under some assumptions on f (it belongs to some class of functions).

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?

7

Analysis of a gradient method

Say we aim to solve

min
x∈Rd

f (x)

under some assumptions on f (it belongs to some class of functions).

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?

7

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖

� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,

� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖
� for all f and all x0 satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 sup
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).

8

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

9

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm

∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1;

parameters: µ, L, γ, R.

10

Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2
= R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.
The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

11

Sampled version

� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.

� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.

12

Sampled version
� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.

� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.

12

Sampled version
� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.

� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.

12

Sampled version
� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.
� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.

12

Sampled version
� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.
� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.

12

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13

Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L
(gi − gj)

∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

13

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� replacing them by

f1 > f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 > f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

14

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� replacing them by

f1 > f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 > f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

14

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� replacing them by

f1 > f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 > f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

14

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, 1
gi = f ′(xi) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� replacing them by

f1 > f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2

f0 > f1 + 〈g1, x0 − x1〉+ 1
2L‖g0 − g1‖2 + µ

2(1−µ/L)
∥∥x0 − x1 − 1

L
(g0 − g1)

∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

14

Semidefinite lifting

� Using x1 = x0 − γg0, all elements are quadratic in (g0, g1), and linear in (f0, f1):

max
g0,g1
f0,f1

‖g1‖2

subject to f1 > f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

f0 > f1 + γ〈g1, g0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

‖g0‖2 = R2.

� They are therefore linear in terms of a Gram matrix G and a vector F , with

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
=
[
g0 g1

]>[
g0 g1

]
, F =

[
f0 f1

]
,

where G < 0 by construction.

15

Semidefinite lifting

� Using x1 = x0 − γg0, all elements are quadratic in (g0, g1), and linear in (f0, f1):

max
g0,g1
f0,f1

‖g1‖2

subject to f1 > f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

f0 > f1 + γ〈g1, g0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

‖g0‖2 = R2.

� They are therefore linear in terms of a Gram matrix G and a vector F , with

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
=
[
g0 g1

]>[
g0 g1

]
, F =

[
f0 f1

]
,

where G < 0 by construction.

15

Semidefinite lifting

� Using x1 = x0 − γg0, all elements are quadratic in (g0, g1), and linear in (f0, f1):

max
g0,g1
f0,f1

‖g1‖2

subject to f1 > f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

f0 > f1 + γ〈g1, g0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2

‖g0‖2 = R2.

� They are therefore linear in terms of a Gram matrix G and a vector F , with

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
=
[
g0 g1

]>[
g0 g1

]
, F =

[
f0 f1

]
,

where G < 0 by construction.

15

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.

16

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.

16

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: numerics match the (expected) max{(1− γL)2, (1− γµ)2}.

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: numerics match the (expected) max{(1− γL)2, (1− γµ)2}.

17

Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: numerics match the (expected) max{(1− γL)2, (1− γµ)2}.

17

Translation to worst-case guarantees

� Let us rephrase our target: we look for ρ(γ) (hopefully small) such that∥∥f ′(x1)∥∥ ≤ ρ(γ)∥∥f ′(x0)∥∥
is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γf ′(x0).

� Feasible points to the previous SDP correspond to lower bounds on ρ(γ).

� Obtaining upper bounds on ρ(γ)?
Exactly what a dual does!

� Any such ρ(γ) that is valid for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L is a feasible point
to the dual SDP.

18

Translation to worst-case guarantees

� Let us rephrase our target: we look for ρ(γ) (hopefully small) such that∥∥f ′(x1)∥∥ ≤ ρ(γ)∥∥f ′(x0)∥∥
is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γf ′(x0).

� Feasible points to the previous SDP correspond to lower bounds on ρ(γ).

� Obtaining upper bounds on ρ(γ)?
Exactly what a dual does!

� Any such ρ(γ) that is valid for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L is a feasible point
to the dual SDP.

18

Translation to worst-case guarantees

� Let us rephrase our target: we look for ρ(γ) (hopefully small) such that∥∥f ′(x1)∥∥ ≤ ρ(γ)∥∥f ′(x0)∥∥
is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γf ′(x0).

� Feasible points to the previous SDP correspond to lower bounds on ρ(γ).

� Obtaining upper bounds on ρ(γ)?
Exactly what a dual does!

� Any such ρ(γ) that is valid for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L is a feasible point
to the dual SDP.

18

Translation to worst-case guarantees

� Let us rephrase our target: we look for ρ(γ) (hopefully small) such that∥∥f ′(x1)∥∥ ≤ ρ(γ)∥∥f ′(x0)∥∥
is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and x1 = x0 − γf ′(x0).

� Feasible points to the previous SDP correspond to lower bounds on ρ(γ).

� Obtaining upper bounds on ρ(γ)?
Exactly what a dual does!

� Any such ρ(γ) that is valid for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L is a feasible point
to the dual SDP.

18

Dual problem I

� Recall primal problem

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Introduce dual variables λ1, λ2 and τ for the linear constraints, and dualize.
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

19

Dual problem I
� Recall primal problem

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Introduce dual variables λ1, λ2 and τ for the linear constraints, and dualize.
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

19

Dual problem I
� Recall primal problem

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Introduce dual variables λ1, λ2 and τ for the linear constraints, and dualize.

� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

19

Dual problem I
� Recall primal problem

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Introduce dual variables λ1, λ2 and τ for the linear constraints, and dualize.
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

19

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑)

� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~ww
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

20

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑)
� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~ww
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

20

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑)

� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~ww
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

20

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑)
� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~ww
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

20

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑)
� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~ww
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

20

Dual problem II
� Dual problem is

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑)
� Direct consequence:�

�

�

�

‖f ′(x1)‖2 ≤ τ‖f ′(x0)‖2 for all f ∈ Fµ,L, all x0 ∈ Rd and all d ∈ N~w�
∃λ ≥ 0 :

[
−λ(γµ−1)(γL−1)

L−µ − τ −λ(γ(µ+L)−2)
2(L−µ)

−λ(γ(µ+L)−2)
2(L−µ) 1− λ

L−µ

]
4 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓) : hence “m”.

20

Solving the dual
Fix L = 1, µ = .1 and solve the dual SDP for a few values of γ.

−1 0 1 2 3
0

5

10

Step size

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Note: numerics match λ1 = λ2 = 2
|γ|ρ(γ) with ρ(γ) = max{|1− γL|, |1− γµ|}.

21

Solving the dual
Fix L = 1, µ = .1 and solve the dual SDP for a few values of γ.

−1 0 1 2 3
0

5

10

Step size

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Note: numerics match λ1 = λ2 = 2
|γ|ρ(γ) with ρ(γ) = max{|1− γL|, |1− γµ|}.

21

Solving the dual
Fix L = 1, µ = .1 and solve the dual SDP for a few values of γ.

−1 0 1 2 3
0

5

10

Step size

D
ua
lv

al
ue
s
(λ

1
an
d
λ

2
)

λ1

λ2

Note: numerics match λ1 = λ2 = 2
|γ|ρ(γ) with ρ(γ) = max{|1− γL|, |1− γµ|}.

21

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2

(tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
>0, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2

(tight).

22

Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
>0, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2

,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).

22

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).

23

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Performance measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) hold in variety of cases (see later).

In other situations, one might want to relax the PEP for obtaining upper-bounds.

24

Going further

� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?

− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?
− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?
− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?
− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?
− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Going further
� Sublinear rates?

− Look for different types of guarantees, for example

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N).

− Similar ideas and larger SDPs (typically of order N × N),

− and O(N2) interpolation constraints.

� Lyapunov functions?
− Example: let Vk = a‖xk − x?‖2 + b‖f ′(xk)‖2 + c(f (xk)− f?).

− For fixed ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex (to convince yourself, just write the dual PEP: linear in a, b, c).

− Minimization over ρ is quasi-convex (bilinear in a, b, c and ρ) solved via
bisection method + SDP solver.

− Similar to “integral quadratic constraints” by Lessard et al. (2016).

� Optimizing/designing methods? upcoming!

25

Avoiding semidefinite programming modeling steps?

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)

26

Avoiding semidefinite programming modeling steps?

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)

26

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
f ′(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖d̃f (yi)− f ′(yi)‖ ≤ ε‖f ′(yi)‖.

27

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
f ′(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖d̃f (yi)− f ′(yi)‖ ≤ ε‖f ′(yi)‖.

27

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
f ′(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖d̃f (yi)− f ′(yi)‖ ≤ ε‖f ′(yi)‖.

27

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
f ′(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖~df(yi)− f ′(yi)‖ ≤ ε‖f ′(yi)‖.

27

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
~df(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖~df(yi)− f ′(yi)‖ ≤ ε‖f ′(yi)‖.

27

PESTO example: an inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x

?
)

28

PESTO example: an inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x

?
)

28

PESTO example: an inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x

?
)

ε = 0.5
ε = 0.3
ε = 0.1
ε = 0.0

28

PESTO example: Douglas-Rachford splitting

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

ra
te
ρ
2

29

PESTO example: Douglas-Rachford splitting

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

ra
te
ρ
2

29

PESTO example: Douglas-Rachford splitting

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

ra
te
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

29

PESTO example: Douglas-Rachford splitting

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

ra
te
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

29

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

Currently in Matlab, soon in Python.

30

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

Currently in Matlab, soon in Python.

30

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

Currently in Matlab, soon in Python.

30

Current library of examples within PESTO
Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent,

� stochastic methods: SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Ryu, Lieder, Lessard,
Recht, Packard, Van Scoy, Cyrus, Gu, Yang, etc.

Currently in Matlab, soon in Python.

30

Performance estimation problems

Designing methods using PEPs

Conclusions

31

Main inspiration
Great inspiration from previous works.

� B. Polyak. “Introduction to optimization” (1964)

� Y. Nesterov. “A method of solving a convex programming problem with
convergence rate O(1/k2)”. (1983)

� A. Nemirovsky, and B. Polyak. “Iterative methods for solving linear ill-posed
problems under precise information.” (1984)

� A. Nemirovsky. “Information-based complexity of linear operator equations”.
(1992)

� A. Nemirovsky. “Information-based complexity of convex programming”. (lecture
notes, 1995)

� Y. Nesterov. “Introductory Lectures on Convex Optimization”. (2003/2018)

and many others.

In next couple of slides:

� goal: principled way towards optimal methods.

� in some sense, generalization of Chebyshev methods (tailored for quadratic
minimization) to non-quadratic smooth strongly convex setup.

32

Main inspiration
Great inspiration from previous works.

� B. Polyak. “Introduction to optimization” (1964)

� Y. Nesterov. “A method of solving a convex programming problem with
convergence rate O(1/k2)”. (1983)

� A. Nemirovsky, and B. Polyak. “Iterative methods for solving linear ill-posed
problems under precise information.” (1984)

� A. Nemirovsky. “Information-based complexity of linear operator equations”.
(1992)

� A. Nemirovsky. “Information-based complexity of convex programming”. (lecture
notes, 1995)

� Y. Nesterov. “Introductory Lectures on Convex Optimization”. (2003/2018)

and many others.

In next couple of slides:

� goal: principled way towards optimal methods.

� in some sense, generalization of Chebyshev methods (tailored for quadratic
minimization) to non-quadratic smooth strongly convex setup.

32

Main references

Yoel Drori

Main references for the following slides (sloppy references throughout):
� Y. Drori, T., “On the oracle complexity of smooth strongly convex

minimization”. (2021)
� T., Y. Drori, “An optimal gradient method for smooth strongly convex

minimization”. (2021)
� Y. Drori, T., “Efficient first-order methods for convex minimization: a

constructive approach”. (2020)

� Y. Drori, “The exact information-based complexity of smooth convex
minimization”. (2017)

� D. Kim, J.F. Fessler, “Optimized first-order methods for smooth convex
minimization”. (2016)

� Y. Drori, M. Teboulle, “Performance of first-order methods for smooth convex
minimization: a novel approach”. (2014)

Also closely related:
� B. Van Scoy, R.A. Freeman, K.M. Lynch, “The fastest known globally

convergent first-order method for minimizing strongly convex functions”. (2017)
� D. Kim, J.F. Fessler, “Optimizing the efficiency of first-order methods for

decreasing the gradient of smooth convex functions”. (2021)

33

Main references

Yoel Drori

Main references for the following slides (sloppy references throughout):
� Y. Drori, T., “On the oracle complexity of smooth strongly convex

minimization”. (2021)
� T., Y. Drori, “An optimal gradient method for smooth strongly convex

minimization”. (2021)
� Y. Drori, T., “Efficient first-order methods for convex minimization: a

constructive approach”. (2020)

� Y. Drori, “The exact information-based complexity of smooth convex
minimization”. (2017)

� D. Kim, J.F. Fessler, “Optimized first-order methods for smooth convex
minimization”. (2016)

� Y. Drori, M. Teboulle, “Performance of first-order methods for smooth convex
minimization: a novel approach”. (2014)

Also closely related:
� B. Van Scoy, R.A. Freeman, K.M. Lynch, “The fastest known globally

convergent first-order method for minimizing strongly convex functions”. (2017)
� D. Kim, J.F. Fessler, “Optimizing the efficiency of first-order methods for

decreasing the gradient of smooth convex functions”. (2021)

33

Main references

Yoel Drori

Main references for the following slides (sloppy references throughout):
� Y. Drori, T., “On the oracle complexity of smooth strongly convex

minimization”. (2021)
� T., Y. Drori, “An optimal gradient method for smooth strongly convex

minimization”. (2021)
� Y. Drori, T., “Efficient first-order methods for convex minimization: a

constructive approach”. (2020)
� Y. Drori, “The exact information-based complexity of smooth convex

minimization”. (2017)
� D. Kim, J.F. Fessler, “Optimized first-order methods for smooth convex

minimization”. (2016)
� Y. Drori, M. Teboulle, “Performance of first-order methods for smooth convex

minimization: a novel approach”. (2014)

Also closely related:
� B. Van Scoy, R.A. Freeman, K.M. Lynch, “The fastest known globally

convergent first-order method for minimizing strongly convex functions”. (2017)
� D. Kim, J.F. Fessler, “Optimizing the efficiency of first-order methods for

decreasing the gradient of smooth convex functions”. (2021)

33

Main references

Yoel Drori

Main references for the following slides (sloppy references throughout):
� Y. Drori, T., “On the oracle complexity of smooth strongly convex

minimization”. (2021)
� T., Y. Drori, “An optimal gradient method for smooth strongly convex

minimization”. (2021)
� Y. Drori, T., “Efficient first-order methods for convex minimization: a

constructive approach”. (2020)
� Y. Drori, “The exact information-based complexity of smooth convex

minimization”. (2017)
� D. Kim, J.F. Fessler, “Optimized first-order methods for smooth convex

minimization”. (2016)
� Y. Drori, M. Teboulle, “Performance of first-order methods for smooth convex

minimization: a novel approach”. (2014)
Also closely related:
� B. Van Scoy, R.A. Freeman, K.M. Lynch, “The fastest known globally

convergent first-order method for minimizing strongly convex functions”. (2017)
� D. Kim, J.F. Fessler, “Optimizing the efficiency of first-order methods for

decreasing the gradient of smooth convex functions”. (2021)
33

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees

− idea 1: what about optimizing worst-case guarantees?
(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees

− idea 1: what about optimizing worst-case guarantees?
(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees
− idea 1: what about optimizing worst-case guarantees?

(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees
− idea 1: what about optimizing worst-case guarantees?

(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees
− idea 1: what about optimizing worst-case guarantees?

(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees
− idea 1: what about optimizing worst-case guarantees?

(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Designing methods using PEPs

How could we use PEPs for designing methods, and lower complexity bounds?

� Upper bound side: PEP is a machinery for designing worst-case guarantees
− idea 1: what about optimizing worst-case guarantees?

(design via minimax problems)

− idea 2: what about “mimicking” an ideal method?
(design via conjugate gradients, but no time today)

� Lower bound side: interpolation/extension theorems

− provide a constructive way to generate worst-case examples,

− can be used for designing “worst functions in the world”.

34

Design via minimax problems
We need a few ingredients:

(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods.

For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”.

Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L

(ii) A class of methods.

For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”.

Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods.

For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”.

Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods. For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”.

Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods. For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”.

Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods. For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”. Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Design via minimax problems
We need a few ingredients:
(i) a class of problems. Here: L-smooth µ-strongly convex functions Fµ,L
(ii) A class of methods. For example

w1 = w0 − h1,0f
′(w0),

w2 = w1 − h2,0f
′(w0)− h2,1f

′(w1),

w3 = w2 − h3,0f
′(w0)− h3,1f

′(w1)− h3,2f
′(w2),

...

wN = wN−1 −
N−1∑
i=0

hN,i f
′(wi).

(FOM)

(iii) A notion of “accuracy”. Examples: f (wN)−f?
‖w0−w?‖2

, ‖wN−w?‖2
‖w0−w?‖2

, ‖f
′(wN)‖2

f (w0)−f?
.

⇒ Resulting design problem, for example

min
{hi,j}

max
f∈F0,L

{
f (wN)− f?

‖w0 − w?‖2
: wN obtained from (FOM) and w0

}
.

(i.e., “minimize worst-case”)

35

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ .

Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ . Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Relation to Chebyshev methods

When f is a quadratic function, such design procedures are known

� results are typically obtained via rescaled/shifted Chebyshev polynomials.

� Optimal methods are known for a few notions of accuracy, including

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex quadratics),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex quadratics).

� Those methods have convenient formulations (no need to memorize all past
coefficients and gradients)

− Ex: for ‖wN−w?‖2
‖w0−w?‖2

, we get “Chebyshev semi-iterative method”:

wk = wk−1 − 4δk
L−µ f

′(wk−1) +
(
1− 2δk (L+µ)

L−µ

)
(wk−2 − wk−1),

with δk :=
(
2 L+µ
L−µ − δk−1

)−1
and δ0 := L+µ

L−µ . Limit case (as k →∞) is
Polyak’s Heavy-ball method.

� The situation actually quite similar beyond quadratics.

36

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:

(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:

(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and

(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),

− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Minimax design beyond quadratics

From my humble current understanding:

� approaches to minimax (beyond quadratics) are less direct,

� traditionally follows a two-stage procedure:
(i) algorithm-dependent upper bound, and
(ii) algorithm-independent lower bound.

� Similar approach with PEPs, helped by computers and SDPs.

� It turns out that optimal methods are now known for the two same notions

− ‖wN−w?‖2
‖w0−w?‖2

(for L-smooth µ-strongly convex functions),

− f (wN)−f?
‖w0−w?‖2

(for L-smooth convex functions),
− those methods are incredibly close to Nesterov’s method!

� Beyond that, a few criterion/settings/methods for which “perfectly optimal”
algorithms might be known, but matching lower bounds are still missing.

− ‖f ′(wN)‖2
f (w0)−f?

,
− a few numerically-generated methods.

37

Optimized gradient method (OGM)
Example I: the optimal method for f (yN)−f?

‖y0−y?‖2
is called the “optimized gradient

method” (OGM, Kim & Fessler (2016)):

yk = 1
θk,N

zk +
(
1− 1

θk,N

) (
yk−1 − 1

L
f ′(yk−1)

)
zk+1 = zk −

2θi,N
L

f ′(yk)

which rely on some exotic sequence

θk+1,N =

1+

√
4θ2

k,N
+1

2 if k 6 N − 2
1+

√
8θ2

k,N
+1

2 if k = N − 1,

where θ−1,N = 0, and roughly θk,N ≈ k
2 .

The (tight) worst-case guarantee is

f (yN)− f?

L‖y0 − y?‖2
6

1
2θ2N,N

≈
2
N2 ,

which matches exactly the corresponding lower complexity bound (Drori, 2017).

38

Optimized gradient method (OGM)
Example I: the optimal method for f (yN)−f?

‖y0−y?‖2
is called the “optimized gradient

method” (OGM, Kim & Fessler (2016)):

yk = 1
θk,N

zk +
(
1− 1

θk,N

) (
yk−1 − 1

L
f ′(yk−1)

)
zk+1 = zk −

2θi,N
L

f ′(yk)

which rely on some exotic sequence

θk+1,N =

1+

√
4θ2

k,N
+1

2 if k 6 N − 2
1+

√
8θ2

k,N
+1

2 if k = N − 1,

where θ−1,N = 0, and roughly θk,N ≈ k
2 .

The (tight) worst-case guarantee is

f (yN)− f?

L‖y0 − y?‖2
6

1
2θ2N,N

≈
2
N2 ,

which matches exactly the corresponding lower complexity bound (Drori, 2017).

38

Optimized gradient method (OGM)
Example I: the optimal method for f (yN)−f?

‖y0−y?‖2
is called the “optimized gradient

method” (OGM, Kim & Fessler (2016)):

yk = 1
θk,N

zk +
(
1− 1

θk,N

) (
yk−1 − 1

L
f ′(yk−1)

)
zk+1 = zk −

2θi,N
L

f ′(yk)

which rely on some exotic sequence

θk+1,N =

1+

√
4θ2

k,N
+1

2 if k 6 N − 2
1+

√
8θ2

k,N
+1

2 if k = N − 1,

where θ−1,N = 0, and roughly θk,N ≈ k
2 .

The (tight) worst-case guarantee is

f (yN)− f?

L‖y0 − y?‖2
6

1
2θ2N,N

≈
2
N2 ,

which matches exactly the corresponding lower complexity bound (Drori, 2017).

38

Optimized gradient method (OGM)
Example I: the optimal method for f (yN)−f?

‖y0−y?‖2
is called the “optimized gradient

method” (OGM, Kim & Fessler (2016)):

yk = 1
θk,N

zk +
(
1− 1

θk,N

) (
yk−1 − 1

L
f ′(yk−1)

)
zk+1 = zk −

2θi,N
L

f ′(yk)

which rely on some exotic sequence

θk+1,N =

1+

√
4θ2

k,N
+1

2 if k 6 N − 2
1+

√
8θ2

k,N
+1

2 if k = N − 1,

where θ−1,N = 0, and roughly θk,N ≈ k
2 .

The (tight) worst-case guarantee is

f (yN)− f?

L‖y0 − y?‖2
6

1
2θ2N,N

≈
2
N2 ,

which matches exactly the corresponding lower complexity bound (Drori, 2017).

38

Optimized gradient method (OGM)
Example I: the optimal method for f (yN)−f?

‖y0−y?‖2
is called the “optimized gradient

method” (OGM, Kim & Fessler (2016)):

yk = 1
θk,N

zk +
(
1− 1

θk,N

) (
yk−1 − 1

L
f ′(yk−1)

)
zk+1 = zk −

2θi,N
L

f ′(yk)

which rely on some exotic sequence

θk+1,N =

1+

√
4θ2

k,N
+1

2 if k 6 N − 2
1+

√
8θ2

k,N
+1

2 if k = N − 1,

where θ−1,N = 0, and roughly θk,N ≈ k
2 .

The (tight) worst-case guarantee is

f (yN)− f?

L‖y0 − y?‖2
6

1
2θ2N,N

≈
2
N2 ,

which matches exactly the corresponding lower complexity bound (Drori, 2017).

38

Information-Theoretic Exact Method (ITEM)
Example II: the optimal method for ‖zN−z?‖2

‖z0−z?‖2
is called the “Information-Theoretic

Exact Method” (ITEM, Drori & T. (2021)). Also simple recurrence

yk = (1− βk)zk + βk

(
yk−1 −

1
L
f ′(yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
f ′(yk)

)
,

where the sequences {βk} and {δk} depends on some external sequence

Ak+1 =
(1+ µ

L
)Ak + 2

(
1+

√
(1+ Ak)(1+ µ

L
Ak)
)

(1− µ
L
)2

, k ≥ 0,

with A0 = 0. The (tight) worst-case guarantee is

‖zN − z?‖2

‖z0 − z?‖2
6

1
1+ µ

L
AN

= O

((
1−

√
µ
L

)2N)
,

which matches exactly the corresponding lower complexity bound (Drori & T., 2021).

39

Information-Theoretic Exact Method (ITEM)
Example II: the optimal method for ‖zN−z?‖2

‖z0−z?‖2
is called the “Information-Theoretic

Exact Method” (ITEM, Drori & T. (2021)). Also simple recurrence

yk = (1− βk)zk + βk

(
yk−1 −

1
L
f ′(yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
f ′(yk)

)
,

where the sequences {βk} and {δk} depends on some external sequence

Ak+1 =
(1+ µ

L
)Ak + 2

(
1+

√
(1+ Ak)(1+ µ

L
Ak)
)

(1− µ
L
)2

, k ≥ 0,

with A0 = 0. The (tight) worst-case guarantee is

‖zN − z?‖2

‖z0 − z?‖2
6

1
1+ µ

L
AN

= O

((
1−

√
µ
L

)2N)
,

which matches exactly the corresponding lower complexity bound (Drori & T., 2021).

39

Information-Theoretic Exact Method (ITEM)
Example II: the optimal method for ‖zN−z?‖2

‖z0−z?‖2
is called the “Information-Theoretic

Exact Method” (ITEM, Drori & T. (2021)). Also simple recurrence

yk = (1− βk)zk + βk

(
yk−1 −

1
L
f ′(yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
f ′(yk)

)
,

where the sequences {βk} and {δk} depends on some external sequence

Ak+1 =
(1+ µ

L
)Ak + 2

(
1+

√
(1+ Ak)(1+ µ

L
Ak)
)

(1− µ
L
)2

, k ≥ 0,

with A0 = 0.

The (tight) worst-case guarantee is

‖zN − z?‖2

‖z0 − z?‖2
6

1
1+ µ

L
AN

= O

((
1−

√
µ
L

)2N)
,

which matches exactly the corresponding lower complexity bound (Drori & T., 2021).

39

Information-Theoretic Exact Method (ITEM)
Example II: the optimal method for ‖zN−z?‖2

‖z0−z?‖2
is called the “Information-Theoretic

Exact Method” (ITEM, Drori & T. (2021)). Also simple recurrence

yk = (1− βk)zk + βk

(
yk−1 −

1
L
f ′(yk−1)

)
zk+1 = (1− µ

L
δk)zk + µ

L
δk

(
yk −

1
µ
f ′(yk)

)
,

where the sequences {βk} and {δk} depends on some external sequence

Ak+1 =
(1+ µ

L
)Ak + 2

(
1+

√
(1+ Ak)(1+ µ

L
Ak)
)

(1− µ
L
)2

, k ≥ 0,

with A0 = 0. The (tight) worst-case guarantee is

‖zN − z?‖2

‖z0 − z?‖2
6

1
1+ µ

L
AN

= O

((
1−

√
µ
L

)2N)
,

which matches exactly the corresponding lower complexity bound (Drori & T., 2021).

39

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Notes on those optimal method: OGM & ITEM

How were they found?

� by solving the minimax analytically.

� (Step 1) inspiration from numerical solutions to SDPs & convex relaxations of
the minimax problem,

� (Step 2) lower bounds constructed from interpolation conditions.

Relation to Nesterov’s method?

� OGM & ITEM heavily rely on “interpolation inequalities”.

� Those inequalities have caveats, and the methods do not generalize well (e.g.,
to constraints/nonsmooth term).

� Nesterov’s method: can be obtained as an optimized gradient method whose
proof relies only on more convenient inequalities.

40

Numerical example

Example III: using PEPs for optimizing a method for f (wN)−f?
f (w0)−f?

, numerically?

Solving such minimax numerically is NP-hard in general—equivalent to minimization
under bilinear matrix inequality (BMI). We work with tractable relaxations.

Let us pick L = 1, µ = .1. The best method we could reach (through numerical
optimization) for N = 5 satisfies

f (w5)−f?
f (w0)−f?

≤ 0.0365,

with step sizes

[h?i,j] =

1.9060
0.3879 2.1439
0.1585 0.4673 2.1227
0.0660 0.1945 0.4673 2.1439
0.0224 0.0660 0.1585 0.3879 1.9060

 .

41

Numerical example

Example III: using PEPs for optimizing a method for f (wN)−f?
f (w0)−f?

, numerically?

Solving such minimax numerically is NP-hard in general—equivalent to minimization
under bilinear matrix inequality (BMI). We work with tractable relaxations.

Let us pick L = 1, µ = .1. The best method we could reach (through numerical
optimization) for N = 5 satisfies

f (w5)−f?
f (w0)−f?

≤ 0.0365,

with step sizes

[h?i,j] =

1.9060
0.3879 2.1439
0.1585 0.4673 2.1227
0.0660 0.1945 0.4673 2.1439
0.0224 0.0660 0.1585 0.3879 1.9060

 .

41

Numerical example

Example III: using PEPs for optimizing a method for f (wN)−f?
f (w0)−f?

, numerically?

Solving such minimax numerically is NP-hard in general—equivalent to minimization
under bilinear matrix inequality (BMI). We work with tractable relaxations.

Let us pick L = 1, µ = .1. The best method we could reach (through numerical
optimization) for N = 5 satisfies

f (w5)−f?
f (w0)−f?

≤ 0.0365,

with step sizes

[h?i,j] =

1.9060
0.3879 2.1439
0.1585 0.4673 2.1227
0.0660 0.1945 0.4673 2.1439
0.0224 0.0660 0.1585 0.3879 1.9060

 .

41

Numerical example

Example III: using PEPs for optimizing a method for f (wN)−f?
f (w0)−f?

, numerically?

Solving such minimax numerically is NP-hard in general—equivalent to minimization
under bilinear matrix inequality (BMI). We work with tractable relaxations.

Let us pick L = 1, µ = .1. The best method we could reach (through numerical
optimization) for N = 5 satisfies

f (w5)−f?
f (w0)−f?

≤ 0.0365,

with step sizes

[h?i,j] =

1.9060
0.3879 2.1439
0.1585 0.4673 2.1227
0.0660 0.1945 0.4673 2.1439
0.0224 0.0660 0.1585 0.3879 1.9060

 .

41

Numerical example

This can be done for a few values of L, µ and N. For example (still L = 1, µ = .1)

� For a single iteration, N = 1, we obtain a guarantee f (w1)−f?
f (w0)−f?

≤ 0.6694 with the
corresponding step size

[h?i,j] =
[
1.8182

]
,

which matches the known optimal step size 2/(L+ µ).

� For N = 2, we obtain f (w2)−f?
f (w0)−f?

≤ 0.3554 with

[h?i,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (w3)−f?
f (w0)−f?

≤ 0.1698 with

[h?i,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .

42

Numerical example

This can be done for a few values of L, µ and N. For example (still L = 1, µ = .1)

� For a single iteration, N = 1, we obtain a guarantee f (w1)−f?
f (w0)−f?

≤ 0.6694 with the
corresponding step size

[h?i,j] =
[
1.8182

]
,

which matches the known optimal step size 2/(L+ µ).

� For N = 2, we obtain f (w2)−f?
f (w0)−f?

≤ 0.3554 with

[h?i,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (w3)−f?
f (w0)−f?

≤ 0.1698 with

[h?i,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .

42

Numerical example

This can be done for a few values of L, µ and N. For example (still L = 1, µ = .1)

� For a single iteration, N = 1, we obtain a guarantee f (w1)−f?
f (w0)−f?

≤ 0.6694 with the
corresponding step size

[h?i,j] =
[
1.8182

]
,

which matches the known optimal step size 2/(L+ µ).

� For N = 2, we obtain f (w2)−f?
f (w0)−f?

≤ 0.3554 with

[h?i,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (w3)−f?
f (w0)−f?

≤ 0.1698 with

[h?i,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .

42

Numerical example

This can be done for a few values of L, µ and N. For example (still L = 1, µ = .1)

� For a single iteration, N = 1, we obtain a guarantee f (w1)−f?
f (w0)−f?

≤ 0.6694 with the
corresponding step size

[h?i,j] =
[
1.8182

]
,

which matches the known optimal step size 2/(L+ µ).

� For N = 2, we obtain f (w2)−f?
f (w0)−f?

≤ 0.3554 with

[h?i,j] =

[
2.0095
0.4229 2.0095

]
.

� For N = 3, we obtain f (w3)−f?
f (w0)−f?

≤ 0.1698 with

[h?i,j] =

1.94700.4599 2.2406
0.1705 0.4599 1.9470

 .

42

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

43

Reminder: smooth strongly convex interpolation/extension

Consider a set S , and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
subgradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find a f ∈ Fµ,L s.t.

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

44

Special case: convex interpolation problem
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

45

Special case: convex interpolation problem
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

45

Special case: convex interpolation problem
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

45

Special case: convex interpolation problem
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec. and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

45

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!

− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!

− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!

− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)

− idea: impose a few additional constraints on the structure so that any
black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)
− idea: impose a few additional constraints on the structure so that any

black-box first-order method has the “same information” at each iteration;

− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)
− idea: impose a few additional constraints on the structure so that any

black-box first-order method has the “same information” at each iteration;
− those constraints fit into a SDP;

− such functions are sometimes referred to as being “zero-chain”.

46

Shape of lower complexity bounds

Role of extension/interpolation results, so far?

� For obtaining tight SDP representation of the worst-case computation problem.

� We can infer shapes for the worst-case functions!
− Why? Let’s flashback into the interpolation/extension problem!

� Example: (ccp) convex minimization, worst-case problems can be assumed to
have the form

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
.

� Similar constructions for smooth (possibly) strongly convex functions.

� We can use that for generating algorithm-independent lower bounds numerically
(with a few additional ingredients)
− idea: impose a few additional constraints on the structure so that any

black-box first-order method has the “same information” at each iteration;
− those constraints fit into a SDP;
− such functions are sometimes referred to as being “zero-chain”.

46

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM
FGM

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM
FGM
Optimized method

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM
FGM
Optimized method
Conjugate gradient bound

47

Numerical example
Worst-case performance f (wk)−f?

‖w0−w?‖2
with L = 1 and µ = .01. We compare

� worst-case performance of known methods, namely Fast Gradient Method
(FGM), Triple Momentum Method (TMM) computed using PEPs,

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� Lower complexity bound (numerically generated).

0 10 20 30 40 50

101

10−3

10−7

Iteration k

f
(w

k
)−

f ?
‖w

0
−
w

?
‖2

TMM
FGM
Optimized method
Conjugate gradient bound
Lower bound

47

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound
Optimized method

48

Numerical example

Worst-case performance f (wk)−f?
f (w0)−f?

with L = 1 and µ = .01. We compare

� worst-case performance of optimized method (numerically generated),

� conjugate-gradient based method (numerically generated),

� lower complexity bound (numerically generated).

0 10 20 30 40 50

100

10−2

10−4

Iteration k

f
(w

k
)−

f ?
f
(w

0
)−

f ?

Conjugate gradient bound
Optimized method
Lower bound

48

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

A few observations/limitations

Were we lucky? Some pieces might be missing!

� Why/when are optimal step sizes {h?i,j} independent of horizon N?

� Why/when can the optimal method be expressed efficiently? (eg. using second
order recursions)

The situation seems quite involved in general, apart from a few cases

� f (wN)−f?
‖w0−w?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖wN−w?‖2
‖w0−w?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖f
′(wN)‖2

f (w0)−f?
with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

49

Performance estimation problems

Designing methods using PEPs

Conclusions

50

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds (rigorous baselines),

� results can only be improved by changing algorithm and/or assumptions,

� helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics & symbolic computations!

� fast prototyping:
before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

� overall: principled approach (definition of worst-case).

Difficulties:

� suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization

� closed-form solutions might be involved.

51

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

52

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

52

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

When it does: principled approach to worst-case analyses.

52

Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github

	Performance estimation problems
	Designing methods using PEPs
	Conclusions

