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Long-term goal: push adaptive machine
learning to the next level.

We aim to develop refined methods, go-
ing beyond traditional worst-case analy-
sis, for exploiting structure in the learn-
ing problem at hand [...]



Francis Bach

“Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions” (COLT 2019).
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What is this presentation about?

Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

Focus on simple proofs, relying on (quadratic) potential functions

(Nesterov 1983), (Beck & Teboulle 2009), (Wilson, Recht & Jordan 2016), (Hu & Lessard

2017), (Bansal & Gupta 2019), and many others.
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Example: analysis of a gradient step

Find x4 such that

f(xx) = min f(x).
X
(Gradient method) We decide to use: xxi1 = xx — Vi’ (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f(xy) — f(x&), [[F'(xn)|l, Ixn — x«[|?
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Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

(1) (Convexity) F(x) > (y) + (F'(y).x — ),
(2) (L-smoothness) [[(x) — F'(y)] < Llx — ],

(2b) (L-smoothness) £(x) < F(y) + ('(y).x — y) + §llx — v



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fi min f(x)7



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fi min f(x)7

It is known that f(xy) — fi = O(%) with small enough step sizes (e.g., %)



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
fo = minf(x)?
X
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with

o = k(F(x) — ) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)

For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) — ) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) — ) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

f f f
¢N§¢N—1§"'§¢O



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) — ) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(F(xw) = F) S oy <oy 1 < ... < 8h



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) — ) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f(x) — £) < oy < dhy_1 < ... < ¢h = 5llxo — x|



Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fr min f(x)7
It is known that f(xy) — fi = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with

o = k(F(x) — ) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f(x) — £) < oy < dhy_1 < ... < ¢h = 5llxo — x|

_ 2
hence: f(xn) — fi < %_
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How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

®  where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() — ).

How to choose ay, by, ¢, di's?

1. choice should satisfy “qbi“ < ¢£”,

2. choice should result in bound on ||/ (xy)]/?.
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How does it work for the gradient method?
Given ¢!, ¢!, how to verify that for all L-smooth convex f and iterate x,
Pepr < 0L7
Notations: the set of such pairs (qﬁi, ¢£+1) is denoted Vy (here: for gradient method).

Answer:
qb,':ﬂ < ¢£ for all L-smooth convex f, and iterate x;

=

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ay, bk, ¢k, di } k-

In others words: efficient (convex) representation of V. availablel
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How does it work for the gradient method?

Recap: we want to bound ||/ (xy)|

2. choose

¢£ = ax HXk — X,CH2 + by ||f/(Xk)H2 + 2¢k <f/(Xk),Xk — X*> + di (f(Xk) — f*).

with ¢§ = L2||x0 — x.||* and ¢}, = by [|f"(xn)|1*.

Motivation: this structure would result in ||/ (xp)||? <

L2 xo—x4 I
by

Question: largest provable by using such potentials?

of n;baf)x , by such that (¢, d5) € Vo,..., (dhy_1, ) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:

1.

Solve the SDP for some values of N.

2. Observe the ay, by, ¢k, di's for some values of N.
3.
4. Prove target result by analytically playing with Vi (i.e., study single iteration).

Try to simplify the qbi’s without loosing too much.
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1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dx =0
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201
2. Observe the ay, by, ck, di's for some values of N.
3. Try to simplify the d)i’s without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dy = 0 [it fails!]

4. Prove target result by analytically playing with Vj:

1 () =(2k + DL(F(xe) = £) + k(k +2)[|F (x0)||* + L2 [1xe = xal I,

hence f(xy) — i = O(N™1) and ||f'(xy)||*> = O(N—2) using by = N(N + 2).



Remaining questions

From previous content, we should still answer
o how to obtain a suitable representation of V,?
© How to obtain an analytical potential, rigorously?

o Does it apply beyond gradient descent?

19



Toy example: gradient descent

Reformulation as a LMI

Other examples

Concluding remarks
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Reformulation as a LMI
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Verifying potentials
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Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).
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Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

Base idea: reformulate question as verification of

0> max fqﬁ,fﬂ — ¢l s.t. f convex and L-smooth, x 41 = xx — Y f’ (xx),
Xk s Xk+1 5

i.e.: replace “for all” by maximization (later formulated as a semidefinite program).
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Verifying potentials

For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.
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Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to verify

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Yk (Xk).-

This is an infinite dimensional problem (variables: f, xx and xy1).
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First simplification: sampling

As it is, the previous problem does not seem very practical...
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First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f convex and L-smooth?

Idea:

- replace f by its discrete version:
fi = f(Xl')a 8i = fl(Xi) vie {kz*}‘

- Require points (x;, gj, f;) to be interpolable by a convex and L-smooth f.
The new constraint is:

3f (convex and L-smooth) : f; = f(x;), & = f'(x;), Vi€ {k,*}.

24



Verifying potentials

For exposition purposes, let us treat the simpler case ¢£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F
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Verifying potentials
For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Y’ (xk)-
This is an infinite dimensional problem (variables: f, xx and xy1).

Sampling: f and f’ are evaluated only at xx and x., hence equivalent

0> max apsn |l — gk — xll® = an xe — x|
X1 Xk 5Bl T s Fie
g = f'(x), fk="r(x)

subject to 3f convex and L-smooth : { 0= F(x), fi=Flx)
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Verifying potentials

For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Y’ (xk)-
This is an infinite dimensional problem (variables: f, xx and xy1).

Sampling: f and f’ are evaluated only at xx and x., hence equivalent

0> max akrr Ik — kg — xell? — ak [Ixe — x|
X1 Xk 5Bl T s Fie

- ) ek =), fio=F(x)

subject to 3f convex and L-smooth : { 0= F(x), fi=Flx)

new variables: xx, x«, gk, fx, fxr. How to handle the existence constraint?
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Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
gradients g; and function values f;.

26



Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
gradients g; and function values f;.

f

xo\\ /X ]

X1

? Possible to find f convex and L-smooth such that

f(x)="f;, and g =f'(x), Vies.
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Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,

gradients g; and function values f;.

f

xo\\ /X ]

X1

? Possible to find f convex and L-smooth such that
f(x)="f, and g =f'(x), VieS.
- Necessary and sufficient condition: Vi,j € S

fi> 6+ (g% —x) + &g — gl

26



Quadratic reformulation

From sampling, we had “¢£+1 < qSZ (for all f and x) iff

0> max  aker|lxk — gk — xel® — ak Ik — x|
Xk 7Xkagk»f*afk
gk = f'(xx), f = f(xk)

subject to 3f convex and L-smooth : { 0= F(x:). F(xe).

27



Quadratic reformulation

From sampling, we had “¢f . < ¢f" (for all f and x;) iff
k+1 k

0> max akrr [x — 8k — x> — ak I — x« 1
P -
. gk = f'(xx)
subject to 3f convex and L-smooth : 0= (x:) ’
- * )3

and we can replace the existence constraints by

fie > fo + 57 llgkl?,
fo > fi + <gk7X* - Xk> + i”gk”{

reaching a (nonconvex) quadratic problem.

fk = f(Xk)
fi = f(xy).

27



Semidefinite reformulation

Quadratic reformulation: “¢£+1 < )" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?
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which is linear in terms of

2
G — ||Xk—X*H (Xk—X*ygk> ; F—Tf f, i
=) llel? [ ]

where G = 0 by construction.
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Semidefinite reformulation

Quadratic reformulation: “¢£+1 < )" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?

which is linear in terms of

2
G — ||Xk—X*H (Xk—X*ygk> F—Tf f, i
=) llel? [ ]

where G = 0 by construction. Hence “qb,’iﬂ < )" (for all f and xy) iff

0> G 2Gao — 29 G12) — ax G
_Gmkgﬁ__ak+1( 1,1 + 7 G2,2 — 27k G1,2) —ak G11

subject to F1 > F> + iGz,z,
Fo>Fi+ G+ iGz,z,

which is a regular semidefinite program (SDP).
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Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is
> 2 -2 -
0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,
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0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,
The dual problem has the form (note that no duality gap occurs):
0> min O
A1,A2>0
subject to A1 = Ag,
2

A

Ak — Ak+1 TYkak+1 — =0
A 1 a

Yeaksr — 3 3r( A1+ A2) — akp1? ’
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Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is
> 2 -2 -
0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,
The dual problem has the form (note that no duality gap occurs):
0> min O

A1,A22>0

subject to A1 = Ag,
A2
Ak — Ak+1 TYkak+1 — =0
A 1 z
Yeaksr — 3 3r( A1+ A2) — akp1?

hence feasibility problem equivalent to verification “¢£+1 < ¢£” (for all £ and x).



Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: ( k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T @k+17
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Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: ( k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

2
bf = an Ik — xa|1? + b ||/ ()| * + 26 (F/ (i), Xk — %) + e (F () — £:)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

How to find a proof for “¢>£+1 < d)i” (for all £ and xx)?
o Exhibit a dual feasible point,
o proof only consists in combining quadratic inequalities.

o If inequality does not hold (for all f and xx), primal solutions are
counter-examples.
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Other examples
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Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:
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Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1)7
Zip1r = (1= 0k)yka1 + 6kzik — Ykf (Vi)

with carefully chosen values of 7, and 7.

Same as before: pick a family of potentials, such as

-
o) = (X;‘/(_ka)*) [Qk ® 4] (X;/(_ka)*> + aullzic = xl1? + die (F(xi) — £),

and solve the corresponding SDP numerically:

o dy such that (¢f, ¢5) € Vo,..., (¢hy_1,64) € Vn_1.
1Py 109N

Few additional technical ingredients allow tuning method's parameters simultaneously.
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Example for N =100, L = 1: numerics (brown),
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Example for N =100, L = 1: numerics (brown), and analytical solution (red).
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Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zp1 = (1= 0k ) ka1 + Oz — Yl (Y1),

with carefully chosen values of 7, and 7.
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Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zky1 = (1= 0k)yhpn + kz — it (Vi)
with carefully chosen values of 7, and 7.

Recovers standard potential (see e.g.,[Nesterov, 1983] or [Bansal & Gupta 2019]):
f = di(F(a) = fi) + §llzx — x|

with dy ~ k2 (more precisely: dy,1 = 1+ dx + /1 + dk).
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Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zky1 = (1= 0k)yhpn + kz — it (Vi)
with carefully chosen values of 7, and 7.

Recovers standard potential (see e.g.,[Nesterov, 1983] or [Bansal & Gupta 2019]):
¢ = di(F(xi) = £) + 5z — x|
with dy ~ k2 (more precisely: dy,1 = 1+ dx + /1 + dk).
From numerical inspirations, alternate ones also possible, such as
¢ = di(F(3) = £) + P 0l + Sllze =l

with d] ~ k2 (more precisely: di,=1+d +4/1+ gd,’(, red curves on prev. slide).
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Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Yierr = (1 — 1)k + iz — o’ (i),
Zii1 = (1= 6)yir1 + 0z — v (k) — Vil (Vks1),

but current analysis is more involved (not based on potentials).
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Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Yierr = (1 — 1)k + iz — o’ (i),
Zii1 = (1= 6)yir1 + 0z — v (k) — Vil (Vks1),

but current analysis is more involved (not based on potentials).

Starting with, for example,

.
o= (5 ) 1@eeta (Y5 ) + el el + i (Fm) — £,

we can perform similar steps.
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Example for N =100, L = 1: numerics (brown),
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Example for N =100, L = 1: numerics (brown), and analytical solution (red).
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Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Vir1 = (L — 7)yk + ez — arf’(yi),
Zker = (1= 8i)yk1 + 6,z — v (k) — Vi (Vks1),

but current analysis is more involved (not based on potentials).
From numerical inspiration, we get
2
S = d¢ (Fvi) = F = [ F 0 [°) + Sllzic — xi1?,

with d}/ ~ k2 (more precisely: d) , =1+d/+/1+2d]/, red curves on prev. slide)
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Conjugate gradient method

Conjugate gradient method (“ideal version")
Xpr1 = argmin, {f(x) : x € xo + span{f’(x0), f'(x1),..., f (xx)}}.

Steps to perform the analysis are slightly trickier (reference at the end), but
¢ analysis is exactly the same as that of the optimized gradient method,

o achieve exactly the lower complexity bound for the class of problems.
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Concluding remarks

Overall philosophy:

40



Concluding remarks

Overall philosophy:

o numerically obtain best “fixed-horizon” potential-based guarantees,
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Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

o proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

¢ inexact, randomized, and stochastic variants, etc.
o first attempts on adaptive methods (line searches, Polyak steps),

o also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

. and probably many others!
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Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

o proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

¢ inexact, randomized, and stochastic variants, etc.
o first attempts on adaptive methods (line searches, Polyak steps),

o also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

. and probably many others!

. and open questions:
o beyond Euclidean geometry?
o Higher-order methods?
© Adaptive methods (BFGS, nonlinear conjugate gradients)?
o

Beyond worst-case analyses?
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¢ ADRIENTAYLOR/POTENTIAL-FUNCTIONS-FOR-FIRST-ORDER-METHODS
¢ ADRIENTAYLOR/PERFORMANCE- ESTIMATION-TOOLBOX
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www.di.ens.fr/~ataylor/

Codes (on GITHUB)
¢ ADRIENTAYLOR/POTENTIAL-FUNCTIONS-FOR-FIRST-ORDER-METHODS
¢ ADRIENTAYLOR/PERFORMANCE- ESTIMATION-TOOLBOX
Tutorial (computer-assisted proofs in optimization):
© HTTPS://FRANCISBACH.COM /COMPUTER-AIDED-ANALYSES /
Presentation mainly based on
¢ T., Francis Bach. “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions”, 2019.
¢ Yoel Drori, T. “Efficient first-order methods for convex minimization: a
constructive approach”, 2019.
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