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Newborn
in the CWI-Inria lab!

Long-term goal: push adaptive machine
learning to the next level.

We aim to develop refined methods, go-
ing beyond traditional worst-case analy-
sis, for exploiting structure in the learn-
ing problem at hand [...]
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Francis Bach

“Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions” (COLT 2019).
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What is this presentation about?

Computer-assisted analyses of first-order optimization methods
(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

Focus on simple proofs, relying on (quadratic) potential functions
(Nesterov 1983), (Beck & Teboulle 2009), (Wilson, Recht & Jordan 2016), (Hu & Lessard

2017), (Bansal & Gupta 2019), and many others.
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Example: analysis of a gradient step

Find x? such that

f (x?) = min
x

f (x).

(Gradient method) We decide to use: xk+1 = xk − γk f ′(xk )

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖?
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Smooth convex functions

A differentiable function f : Rd → R, f is convex and L-smooth iff ∀x , y ∈ Rd :

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.
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Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x

f (x)?

It is known that f (xN)− f? = O( 1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , iterate xk , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk )− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .
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How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.
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How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f and iterate xk

φfk+1 ≤ φ
f
k?

Notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk (here: for gradient method).

Answer:
φfk+1 ≤ φ

f
k for all L-smooth convex f , and iterate xk

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!
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How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φfN−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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How does it work for the gradient method?
1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 6 L2 ‖x0−x?‖2
bN

.

Numerically (live if time allows)

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk )‖2 = O(k−2).
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Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2

a k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

Iteration counter k

c k

0 20 40 60 80 100
0

50

100

150

200

Iteration counter k

d
k

11



Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2
a k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

Iteration counter k

c k

0 20 40 60 80 100
0

50

100

150

200

Iteration counter k

d
k

11



How does it work for the gradient method?
1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 6 L2 ‖x0−x?‖2
bN

.

Numerically (live if time allows)

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).
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Vk =

(
xk − x?
f ′(xk )

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
f ′(xk )

)
+ dk (f (xk )− f (x?))
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How does it work for the gradient method?
1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 6 L2 ‖x0−x?‖2
bN

.

Numerically (live if time allows)

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[it works!]
Tentative simplification #2: ak = L2, ck = 0 [success]
Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).
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2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [it works!]
Tentative simplification #2: ak = L2, ck = 0 [it works!]

Tentative simplification #3: dk = 0 [fail]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).
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How does it work for the gradient method?
1. Solve the SDP for some values of N; recall final guarantee of the form:
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.

Numerically (live if time allows)

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L [it works!]
Tentative simplification #2: ak = L2, ck = 0 [it works!]
Tentative simplification #3: dk = 0

[it fails!]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2) using bN = N(N + 2).
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Remaining questions

From previous content, we should still answer

� how to obtain a suitable representation of Vk?

� How to obtain an analytical potential, rigorously?

� Does it apply beyond gradient descent?

19



Toy example: gradient descent

Reformulation as a LMI

Other examples

Concluding remarks
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Verifying potentials

Recall our candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

�

�

�

�
Given φfk+1, φ

f
k (i.e., fixed {ak , bk , ck , dk}), how to verify

φfk+1 ≤ φ
f
k

for all L-smooth convex f and xk?

Base idea: reformulate question as verification of

0 ≥

max
xk ,xk+1,f

φfk+1 − φ
f
k

s.t. f convex and L-smooth, xk+1 = xk − γk f ′(xk )

,

i.e.: replace “for all” by maximization (later formulated as a semidefinite program).
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Verifying potentials
For exposition purposes, let us treat the simpler case φfk = ak ‖xk − x?‖2.

Verifying φfk+1 ≤ φ
f
k (for all f and xk ) is equivalent to verify

0 ≥ max
xk ,xk+1,f

ak+1 ‖xk+1 − x?‖2 − ak ‖xk − x?‖2

subject to f is convex and L-smooth,

xk+1 = xk − γk f ′(xk ).

This is an infinite dimensional problem (variables: f , xk and xk+1).

However: f and f ′ are evaluated only at xk and x?, hence equivalent

0 ≥ max
x?,xk ,gk ,f?,fk

ak+1 ‖xk − γkgk − x?‖2 − ak ‖xk − x?‖2

subject to ∃f convex and L-smooth :

{
gk = f ′(xk ), fk = f (xk )
0 = f ′(x?), f? = f (x?).

new variables: xk , x?, gk , f?, fk . How to handle the existence constraint?
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First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f convex and L-smooth?

Idea:

- replace f by its discrete version:

fi = f (xi ), gi = f ′(xi ) ∀i ∈ {k, ?} .

- Require points (xi , gi , fi ) to be interpolable by a convex and L-smooth f .

The new constraint is:

∃f (convex and L-smooth) : fi = f (xi ), gi = f ′(xi ), ∀i ∈ {k, ?} .
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Verifying potentials
For exposition purposes, let us treat the simpler case φfk = ak ‖xk − x?‖2.

Verifying φfk+1 ≤ φ
f
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Smooth convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f convex and L-smooth such that

f (xi ) = fi , and gi = f ′(xi ), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj + 〈gj , xi − xj 〉+ 1
2L

∥∥gi − gj
∥∥2.
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Quadratic reformulation

From sampling, we had “φfk+1 ≤ φ
f
k ” (for all f and xk ) iff

0 ≥ max
x?,xk ,gk ,f?,fk

ak+1 ‖xk − γkgk − x?‖2 − ak ‖xk − x?‖2

subject to ∃f convex and L-smooth :

{
gk = f ′(xk ), fk = f (xk )
0 = f ′(x?), f? = f (x?).

and we can replace the existence constraints by

fk ≥ f? +
1
2L‖gk‖

2,

f? ≥ fk + 〈gk , x? − xk 〉+ 1
2L‖gk‖

2,

reaching a (nonconvex) quadratic problem.
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Semidefinite reformulation
Quadratic reformulation: “φfk+1 ≤ φ

f
k ” (for all f and xk ) iff

0 ≥ max
x?,xk ,gk ,f?,fk

ak+1 ‖xk − γkgk − x?‖2 − ak ‖xk − x?‖2

subject to fk ≥ f? +
1
2L‖gk‖

2,

f? ≥ fk + 〈gk , x? − xk 〉+ 1
2L‖gk‖

2,

which is linear in terms of

G =

[
‖xk − x?‖2 〈xk − x?, gk 〉
〈xk − x?, gk 〉 ‖gk‖2

]
, F =

[
fk f?

]
,

where G < 0 by construction. Hence “φfk+1 ≤ φ
f
k ” (for all f and xk ) iff

0 ≥ max
G<0, F

ak+1 (G1,1 + γ2kG2,2 − 2γkG1,2)− ak G1,1

subject to F1 ≥ F2 + 1
2LG2,2,

F2 ≥ F1 + G1,2 + 1
2LG2,2,

which is a regular semidefinite program (SDP).
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Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is

0 ≥ max
G<0, F

ak+1 (G1,1 + γ2kG2,2 − 2G1,2)− ak G1,1

subject to F1 ≥ F2 + 1
2LG2,2 : λ1,

F2 ≥ F1 + G1,2 + 1
2LG2,2 : λ2.

The dual problem has the form (note that no duality gap occurs):

0 ≥ min
λ1,λ2≥0

0

subject to λ1 = λ2,(
ak − ak+1 γkak+1 − λ2

2
γkak+1 − λ2

2
1
2L (λ1 + λ2)− ak+1γ

2
k

)
< 0,

hence feasibility problem equivalent to verification “φfk+1 ≤ φ
f
k ” (for all f and xk ).
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Verifying a potential: final formulation�

�

�

�
ak+1‖xk+1 − x?‖2 ≤ ak‖xk − x?‖2 with xk+1 = xk − γk f ′(xk ), for all

L-smooth convex f and xk
⇔

∃λ ≥ 0 :

(
ak − ak+1 γkak+1 − λ

2
γkak+1 − λ

2
λ
L
− ak+1γ

2
k

)
< 0.

How to verify more complicated potential, such as

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?)?

Exact same tricks, with some adaptations

� additional sample xk+1 (for using gk+1 = f ′(xk+1), fk+1 = f (xk+1)),
� hence 6 inequalities (instead of 2),
� and 3x3 SDP (also on dual side).

How to find a proof for “φfk+1 ≤ φ
f
k ” (for all f and xk )?

� Exhibit a dual feasible point,
� proof only consists in combining quadratic inequalities.
� If inequality does not hold (for all f and xk ), primal solutions are

counter-examples.
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Toy example: gradient descent

Reformulation as a LMI

Other examples

Concluding remarks
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Accelerated/fast gradient method
Consider a fast gradient method for smooth convex minimization:

yk+1 = (1− τk )xk + τkzk ,

xk+1 = yk+1 − αk f
′(yk+1),

zk+1 = (1− δk )yk+1 + δkzk − γk f ′(yk+1),

with carefully chosen values of τk and ηk .

Same as before: pick a family of potentials, such as

φfk =

(
xk − x?
f ′(xk )

)>
[Qk ⊗ Id ]

(
xk − x?
f ′(xk )

)
+ ak‖zk − x?‖2 + dk (f (xk )− f?),

and solve the corresponding SDP numerically:

max
φf

1,...,φ
f
N−1,dN

dN such that (φf0, φ
f
1) ∈ V0, . . . , (φfN−1, φ

f
N) ∈ VN−1.

Few additional technical ingredients allow tuning method’s parameters simultaneously.
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Example for N = 100, L = 1: numerics (brown),

and analytical solution (red).

0 50 100
−2
−1

0
1
2

Qk [1, 1]

0 50 100
−2
−1

0
1
2

Qk [1, 2]

0 50 100
0

1,000
2,000
3,000

Qk [2, 2]

0 50 100
−2
−1

0
1
2

ak

0 50 100
0

2,000

4,000

dk

0 50 100
−2
−1

0
1
2

τk

0 50 100
−2
−1

0
1
2

αk

0 50 100
0

50
100
150
200

γk

0 50 100
0
1
2
3

δk
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Accelerated/fast gradient method
Consider a fast gradient method for smooth convex minimization:

yk+1 = (1− τk )xk + τkzk ,

xk+1 = yk+1 − αk f
′(yk+1),

zk+1 = (1− δk )yk+1 + δkzk − γk f ′(yk+1),

with carefully chosen values of τk and ηk .

Recovers standard potential (see e.g.,[Nesterov, 1983] or [Bansal & Gupta 2019]):

φfk = dk (f (xk )− f?) +
L
2‖zk − x?‖2

with dk ∼ k2 (more precisely: dk+1 = 1+ dk +
√
1+ dk ).

From numerical inspirations, alternate ones also possible, such as

φfk = d ′k (f (xk )− f?) +
d′k
2L

∥∥f ′(xk )∥∥2 + L
2‖zk − x?‖2

with d ′k ∼ k2 (more precisely: d ′k+1 = 1+ d ′k +
√

1+ 3
2d
′
k , red curves on prev. slide).
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Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

yk+1 = (1− τk )yk + τkzk − αk f
′(yk ),

zk+1 = (1− δk )yk+1 + δkzk − γk f ′(yk )− γ′k f
′(yk+1),

but current analysis is more involved (not based on potentials).

Starting with, for example,

φfk =

(
yk − x?
f ′(yk )

)>
[Qk ⊗ Id ]

(
yk − x?
f ′(yk )

)
+ ak‖zk − x?‖2 + dk (f (yk )− f?),

we can perform similar steps.
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Example for N = 100, L = 1: numerics (brown),

and analytical solution (red).
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Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

yk+1 = (1− τk )yk + τkzk − αk f
′(yk ),

zk+1 = (1− δk )yk+1 + δkzk − γk f ′(yk )− γ′k f
′(yk+1),

but current analysis is more involved (not based on potentials).

From numerical inspiration, we get

φfk = d ′′k (f (yk )− f? − 1
2L

∥∥f ′(yk )∥∥2) + L
2‖zk − x?‖2,

with d ′′k ∼ k2 (more precisely: d ′′k+1 = 1+ d ′′k +
√

1+ 2d ′′k , red curves on prev. slide)
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Conjugate gradient method

Conjugate gradient method (“ideal version”)

xk+1 = argminx{f (x) : x ∈ x0 + span{f ′(x0), f ′(x1), . . . , f ′(xk )}}.

Steps to perform the analysis are slightly trickier (reference at the end), but

� analysis is exactly the same as that of the optimized gradient method,

� achieve exactly the lower complexity bound for the class of problems.

39



Concluding remarks
Overall philosophy:

� numerically obtain best “fixed-horizon” potential-based guarantees,

� helps designing & benchmarking proofs,

More examples?

� proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

� inexact, randomized, and stochastic variants, etc.

� first attempts on adaptive methods (line searches, Polyak steps),

� also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

... and probably many others!

... and open questions:

� beyond Euclidean geometry?

� Higher-order methods?

� Adaptive methods (BFGS, nonlinear conjugate gradients)?

� Beyond worst-case analyses?
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Thanks! Questions?
www.di.ens.fr/∼ataylor/

Codes (on Github)
� AdrienTaylor/Potential-functions-for-first-order-methods
� AdrienTaylor/Performance-Estimation-Toolbox

Tutorial (computer-assisted proofs in optimization):
� https://francisbach.com/computer-aided-analyses/

Presentation mainly based on
� T., Francis Bach. “Stochastic first-order methods: non-asymptotic and

computer-aided analyses via potential functions”, 2019.
� Yoel Drori, T. “Efficient first-order methods for convex minimization: a

constructive approach”, 2019.
� T., François Glineur, Julien Hendrickx. “Smooth strongly convex

interpolation and exact worst-case performance of first-order methods”, 2017.
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