Computer-aided analyses of optimization methods
via potential functions

Adrien Taylor

y 4
i

S i AN
e — ENS

CWI-Inria workshop - September 2020

4TUNE

Adaptive, Efficient, Provable and Flexible Tuning for Machine Learning

Joint research team between CWI and Inria.

Team

4TUNE includes 2 research scientists from the Centrum Wiskunde & Informatica
(CWI) and 3 researchers from the Sierra project-team of Inria.

CWiI researchers

A

Peter Griinwald Wouter M. Koolen

INRIA, Sierra project-team researchers

4 2

@

Francis Bach Pierre Gaillard Adrien Taylor

Newborn
in the CWI-Inria lab!

Long-term goal: push adaptive machine
learning to the next level.

We aim to develop refined methods, go-
ing beyond traditional worst-case analy-
sis, for exploiting structure in the learn-
ing problem at hand [...]

Francis Bach

“Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions” (COLT 2019).

What is this presentation about?

What is this presentation about?

Computer-assisted analyses of first-order optimization methods

What is this presentation about?

Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

What is this presentation about?

Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

Focus on simple proofs, relying on (quadratic) potential functions

(Nesterov 1983), (Beck & Teboulle 2009), (Wilson, Recht & Jordan 2016), (Hu & Lessard

2017), (Bansal & Gupta 2019), and many others.

Example: analysis of a gradient step

Find x4 such that

f(xe) = mXin f(x).

Example: analysis of a gradient step

Find x4 such that

f(xe) = mXin f(x).

(Gradient method) We decide to use: xxi1 = xx — Vi’ (xk)

Example: analysis of a gradient step

Find x4 such that

f(xx) = min f(x).
X
(Gradient method) We decide to use: xxi1 = xx — Vi’ (xk)

Question: what a priori guarantees after N iterations?

Example: analysis of a gradient step

Find x4 such that

f(xx) = min f(x).
X
(Gradient method) We decide to use: xxi1 = xx — Vi’ (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f(xy) — f(x&), [[F'(xn)|l, Ixn — x«[|?

Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

(1) (Convexity) f(x) = f(y) + (f'(y),x —),

Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

f

(1) (Convexity) f(x) = f(y) + (f'(y),x —),

(2) (L-smoothness) ||f"(x) — f'(y)I| < Llx — yl|,

Smooth convex functions

A differentiable function f : RY — R, f is convex and L-smooth iff Vx,y € RY:

(1) (Convexity) F(x) > (y) + (F'(y).x —),
(2) (L-smoothness) [[(x) — F'(y)] < Llx —],

(2b) (L-smoothness) £(x) < F(y) + ('(y).x — y) + §llx — v

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fi min f(x)7

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fi min f(x)7

It is known that f(xy) — fi = O(%) with small enough step sizes (e.g., %)

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
fo = minf(x)?
X
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with

o = k(F(x) —) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)

For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) —) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) —) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

f f f
¢N§¢N—1§"'§¢O

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) —) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(F(xw) = F) S oy <oy 1 < ... < 8h

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function
= mi ?
fe min f(x)7
It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with
o = k(F(x) —) + %ka — x||? (potential at iteration k),
see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f(x) — £) < oy < dhy_1 < ... < ¢h = 5llxo — x|

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

= mi ?
fr min f(x)7
It is known that f(xy) — fi = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, iterate x,, and k > 0, easy to show d)i“ < ¢/C with

o = k(F(x) —) + %ka — x||? (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f(x) — £) < oy < dhy_1 < ... < ¢h = 5llxo — x|

_ 2
hence: f(xn) — fi < %_

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

® where does this ¢li comes from!? (structure and dependence on k)

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

® where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() —).

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

® where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() —).

How to choose ay, by, ¢, di's?

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration
® where does this ¢li comes from!? (structure and dependence on k)
Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() —).

How to choose ay, by, ¢, di's?

1. choice should satisfy “qbiﬂ < ¢£”,

How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

® where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() —).

How to choose ay, by, ¢, di's?

1. choice should satisfy “qbi“ < ¢£”,

2. choice should result in bound on ||/ (xy)]/?.

How does it work for the gradient method?
Given ¢£+1, qb,’i, how to verify that for all L-smooth convex f and iterate xi

f f
Phr1 < Ok7

How does it work for the gradient method?
Given qb,’:H, qb,’i, how to verify that for all L-smooth convex f and iterate xi

f f
Phs1 S 97

Notations: the set of such pairs (qﬁi, ¢£+1) is denoted Vy (here: for gradient method).

How does it work for the gradient method?
Given ¢!, ¢!, how to verify that for all L-smooth convex f and iterate x,
Fhr < L7
Notations: the set of such pairs (qﬁi, ¢£+1) is denoted Vy (here: for gradient method).

Answer:
qb,':ﬂ < ¢£ for all L-smooth convex f, and iterate x;

=

some small-sized linear matrix inequality (LMI) is feasible.

How does it work for the gradient method?
Given qb,’:H, qb,’i, how to verify that for all L-smooth convex f and iterate xi

f f
Phs1 S 97

Notations: the set of such pairs (qﬁi, ¢£+1) is denoted Vy (here: for gradient method).

Answer:
qb,':ﬂ < ¢£ for all L-smooth convex f, and iterate x;

=

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ay, bk, ¢k, di } k-

How does it work for the gradient method?
Given ¢!, ¢!, how to verify that for all L-smooth convex f and iterate x,
Pepr < 0L7
Notations: the set of such pairs (qﬁi, ¢£+1) is denoted Vy (here: for gradient method).

Answer:
qb,':ﬂ < ¢£ for all L-smooth convex f, and iterate x;

=

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ay, bk, ¢k, di } k-

In others words: efficient (convex) representation of V. availablel

How does it work for the gradient method?

Recap: we want to bound ||/(xy)||?; choose

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose

¢£ = ax HXk — X*”2 + by ||f’(Xk)H2 + 2¢k <f/(Xk),Xk — X*> + di (f(Xk) — f*).

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||f'(><k)||2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(Xk)||2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

2 - LPllxo—x|?

Motivation: this structure would result in ||/ (xy)|| o

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(Xk)||2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

L2[|x0 —x ||?

Motivation: this structure would result in ||/ (xp)||? < o

Question: largest provable by using such potentials?

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(Xk)||2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

2 < LZHXO*X* HZ

Motivation: this structure would result in || (xy)]| o

Question: largest provable by using such potentials?

_ max by such that (¢}, #1) € Vo,..., (¢hy_1, ¢h) € V-1
Ghoe bl _1ibn

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(X;<)H2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

2 < LZHXO*X* HZ

Motivation: this structure would result in || (xy)]| o

Question: largest provable by using such potentials?

of n;f)x , by such that (¢, d5) € Vo,..., (dhy_1,) € Vv_1
10 N_1:bN

Let's engineer a worst-case guarantee:

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(X;<)H2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

2 - LPllxo—x|?

Motivation: this structure would result in || (xy)]| o

Question: largest provable by using such potentials?

of n;f)x , by such that (¢, d5) € Vo,..., (dhy_1,) € Vv_1
1000 N—1°°N

Let's engineer a worst-case guarantee:
1. Solve the SDP for some values of N.

How does it work for the gradient method?
Recap: we want to bound ||/(xy)||?; choose
of = ap I — x+]1? + by ||1"(X;<)H2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

2 - LPllxo—x|?

Motivation: this structure would result in ||/ (xy)]] o

Question: largest provable by using such potentials?

of n;f)x , by such that (¢, d5) € Vo,..., (dhy_1,) € Vv_1
1000 N—1°°N

Let's engineer a worst-case guarantee:
1. Solve the SDP for some values of N.

2. Observe the ay, by, ¢k, di's for some values of N.

How does it work for the gradient method?

2. choose

Recap: we want to bound ||/ (xy)|
of = ap I — x+]1? + by ||1"(X;<)H2 +2¢ (' (xk), Xk — xx) + dic (F(xi) — F).

with 0§ = L?|[x0 — x| and ¢f, = by || f"(xn)|%.

L2[|x0 —x ||?

Motivation: this structure would result in ||/ (xp)||? < o

Question: largest provable by using such potentials?

of n;f)x , by such that (¢, d5) € Vo,..., (dhy_1,) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:
1. Solve the SDP for some values of N.
2. Observe the ay, by, ¢k, di's for some values of N.

3. Try to simplify the qbi’s without loosing too much.

How does it work for the gradient method?

Recap: we want to bound ||/ (xy)|

2. choose

¢£ = ax HXk — X,CH2 + by ||f/(Xk)H2 + 2¢k <f/(Xk),Xk — X*> + di (f(Xk) — f*).

with ¢§ = L2||x0 — x.||* and ¢}, = by [|f"(xn)|1*.

Motivation: this structure would result in ||/ (xp)||? <

L2 xo—x4 I
by

Question: largest provable by using such potentials?

of n;baf)x , by such that (¢, d5) € Vo,..., (dhy_1,) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:

1.

Solve the SDP for some values of N.

2. Observe the ay, by, ¢k, di's for some values of N.
3.
4. Prove target result by analytically playing with Vi (i.e., study single iteration).

Try to simplify the qbi’s without loosing too much.

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 G| < g el

Numerically (live if time allows)

N =
by =

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 G| < g el

Numerically (live if time allows)

N= 1
by =

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 G| < g el

Numerically (live if time allows)

N= 1
by= 4

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 G| < g el

Numerically (live if time allows)

N= 1 2
by= 4 9

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3
by= 4 9 16

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

10

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

10

Fixed horizon N = 100, L =1, and
¢£ = ak ||xk — X,(”2 + by ||f/(Xk)H2 + 2c¢k <f/(Xk),Xk — X)+ di (F(xk) — fi).

11

Fixed horizon N = 100, L =1, and
¢£ = ak ||xk — X,(”2 + by ||f/(Xk)H2 + 2c¢k <f/(Xk),Xk — X)+ di (F(xk) — fi).

) 1 .10“‘

15[| 081
< | o8
0.4}
05| | 02l

0 | | | | 0 | | | |

0 20 40 60 80 100 0 20 40 60 80 100
10 200
5| | 150 |

Ck
o
dy
—
o
o
|

5}] 50

—10

| | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Iteration counter k Iteration counter k

11

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the d)i’s without loosing too much.

12

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2

9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the d)i’s without loosing too much.
Tentative simplification #1: dy = (2k + 1)L

12

3
T

Vi

2
15
1
0.5
0

L L L L
0 20 40 60 80 100

0 | | | |
0 20 40 60 80 100

Iteration counter k

Iteration counter k

1
0.8
0.6
0.4
0.2

0

by

200
150
100

dk

50
0

= (X,f/(_X:)*)T Ki:) ® /d:| (f,()) + di (F(x) — F(x2))

-10*

| | | |
0 20 40 60 80 100
Iteration counter k

| | | |
0 20 40 60 80 100
Iteration counter k

13

0 L
0 20 40 60 8

| |
0 100
Iteration counter k

0.6
&
0.4

1
0.8

0.2

[c);;) ® Id} (ka’(_xkx)*) + (2k + 1)L (F(xx) — f(xx))

L L L L
0 20 40 60 80 100

Iteration counter k

13

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2

9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the d)i’s without loosing too much.
Tentative simplification #1: dy = (2k + 1)L

14

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201
2. Observe the ay, by, ck, di's for some values of N.
3. Try to simplify the d)i’s without loosing too much.

Tentative simplification #1: dy = (2k + 1)L [it worksl!]

14

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a; = L2, ¢, =0

14

Vie= (X;'&S*)T (2) o] () + @t L) = 1)

4
) 1 10‘
15| | 081
. | L 06
® = 04
051 N 02l
0 | | | | O | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Iteration counter k Iteration counter k
10 200
51 p 150 |-
s ob— 7N & 10|
5] 50 |-
_ | 0

| | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Iteration counter k Iteration counter k

a=(re) (5 8)er(

Iteration counter k

L L L
0 20 40 60 80 100

0 | | |
0 20 40 60 8
Iteration counter k

L
0 100

Xk — Xk

oy)+ L) = 1)

1
0.8
0.6
0.4
0.2

by

200
150
100

dk

50
0

| | | |
0 20 40 60 80 100
Iteration counter k 15

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a; = L2, ¢, =0

16

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]

16

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dx =0

16

3
T

Vi

2
15
1
0.5
0

L L L L
0 20 40 60 80 100

0 | | | |
0 20 40 60 80 100

Iteration counter k

Iteration counter k

1
0.8
0.6
0.4
0.2

0

by

200
150
100

dk

50
0

= (X,f/(_X:)*)T Ki:) ® /d:| (f,()) + di (F(x) — F(x2))

-10*

| | | |
0 20 40 60 80 100
Iteration counter k

| | | |
0 20 40 60 80 100
Iteration counter k

17

vie= (o) [8) o] (o) ot

| | | |
0 20 40 60 80 100
Iteration counter k

10 | | | |
0 20 40 60 80 100
Iteration counter k

1
0.8
0.6

g
0.4

0 20 40 60 80 100

-10*

Iteration counter k

0 20 40 60 80 100
Iteration counter k

17

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dx =0

18

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.

3. Try to simplify the ¢} 's without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dy = 0 [it fails!]

18

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

< Plro—xl?
17 Gan)* < =g

Numerically (live if time allows)

N =

1 3 4 ... 100
by= 4

2
9 16 25 ... 10201
2. Observe the ay, by, ck, di's for some values of N.
3. Try to simplify the d)i’s without loosing too much.
Tentative simplification #1: dy = (2k + 1)L [it worksl!]
Tentative simplification #2: a, = L2, ¢, = 0 [it works!]
Tentative simplification #3: dy = 0 [it fails!]

4. Prove target result by analytically playing with Vj:

1 () =(2k + DL(F(xe) = £) + k(k +2)[|F (x0)||* + L2 [1xe = xal I,

hence f(xy) — i = O(N™1) and ||f'(xy)||*> = O(N—2) using by = N(N + 2).

Remaining questions

From previous content, we should still answer
o how to obtain a suitable representation of V,?
© How to obtain an analytical potential, rigorously?

o Does it apply beyond gradient descent?

19

Toy example: gradient descent

Reformulation as a LMI

Other examples

Concluding remarks

20

Reformulation as a LMI

21

Verifying potentials

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

Base idea: reformulate question as verification of

0> Phi1 — ok :

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

Base idea: reformulate question as verification of

f f
0> max ¢p,q1 — ¢y s
Xy Xk415F

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

Base idea: reformulate question as verification of

0> max f¢£+1 — ¢l s.t. f convex and L-smooth, x 41 = xx — Y f’ (xx),
Xk s Xk+1 5

22

Verifying potentials

Recall our candidate quadratic QSZ with all the available information at iteration k

O = ar s — xul? 4 bic |7 (x) |2+ 2k (F Oc)y xp — xx) + dic (FOxi) — £).

Given ¢£+1, ¢£ (i.e., fixed {ak, b, ck, dk }), how to verify

f f
1 < P

for all L-smooth convex f and x,?

Base idea: reformulate question as verification of

0> max fqﬁ,fﬂ — ¢l s.t. f convex and L-smooth, x 41 = xx — Y f’ (xx),
Xk s Xk+1 5

i.e.: replace “for all” by maximization (later formulated as a semidefinite program).

22

Verifying potentials

For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

23

Verifying potentials

For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to verify

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Yk (Xk).-

23

Verifying potentials

For exposition purposes, let us treat the simpler case ¢£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to verify

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Yk (Xk).-

This is an infinite dimensional problem (variables: f, xx and xy1).

23

First simplification: sampling

As it is, the previous problem does not seem very practical...

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f convex and L-smooth?

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7
- How to cope with the constraint f convex and L-smooth?

Idea:

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f convex and L-smooth?

Idea:

- replace f by its discrete version:

fi = f(Xl')a 8i = fl(Xl') vie {kz*}‘

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f convex and L-smooth?

Idea:

- replace f by its discrete version:

fi = f(Xl')a 8i = fl(Xi) vie {kz*}‘

- Require points (x;, gj, f;) to be interpolable by a convex and L-smooth f.

24

First simplification: sampling

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable 7

- How to cope with the constraint f convex and L-smooth?

Idea:

- replace f by its discrete version:
fi = f(Xl')a 8i = fl(Xi) vie {kz*}‘

- Require points (x;, gj, f;) to be interpolable by a convex and L-smooth f.
The new constraint is:

3f (convex and L-smooth) : f; = f(x;), & = f'(x;), Vi€ {k,*}.

24

Verifying potentials

For exposition purposes, let us treat the simpler case ¢£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Yk (Xk).-

This is an infinite dimensional problem (variables: f, xx and xy1).

25

Verifying potentials
For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Y’ (xk)-
This is an infinite dimensional problem (variables: f, xx and xy1).

Sampling: f and f’ are evaluated only at xx and x., hence equivalent

0> max apsn |l — gk — xll® = an xe — x|
X1 Xk 5Bl T s Fie
g = f'(x), fk="r(x)

subject to 3f convex and L-smooth : { 0= F(x), fi=Flx)

25

Verifying potentials

For exposition purposes, let us treat the simpler case ¢>£ = ak ||xx — X*HZ.

Verifying ¢£+1 < ¢£ (for all £ and xx) is equivalent to

0> max akr xers — xall® — a [Ixk — xil?
Xy Xk415F

subject to f is convex and L-smooth,

X1 = Xk — Y’ (xk)-
This is an infinite dimensional problem (variables: f, xx and xy1).

Sampling: f and f’ are evaluated only at xx and x., hence equivalent

0> max akrr Ik — kg — xell? — ak [Ixe — x|
X1 Xk 5Bl T s Fie

-) ek =), fio=F(x)

subject to 3f convex and L-smooth : { 0= F(x), fi=Flx)

new variables: xx, x«, gk, fx, fxr. How to handle the existence constraint?

25

Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
gradients g; and function values f;.

26

Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,
gradients g; and function values f;.

f

xo\\ /X]

X1

? Possible to find f convex and L-smooth such that

f(x)="f;, and g =f'(x), Vies.

26

Smooth convex interpolation

Consider an index set S, and its associated values {(x;, gi, fi) };cs with coordinates x;,

gradients g; and function values f;.

f

xo\\ /X]

X1

? Possible to find f convex and L-smooth such that
f(x)="f, and g =f'(x), VieS.
- Necessary and sufficient condition: Vi,j € S

fi> 6+ (g% —x) + &g — gl

26

Quadratic reformulation

From sampling, we had “¢£+1 < qSZ (for all f and x) iff

0> max aker|lxk — gk — xel® — ak Ik — x|
Xk 7Xkagk»f*afk
gk = f'(xx), f = f(xk)

subject to 3f convex and L-smooth : { 0= F(x:). F(xe).

27

Quadratic reformulation

From sampling, we had “¢f . < ¢f" (for all f and x;) iff
k+1 k

0> max akrr [x — 8k — x> — ak I — x« 1
P -
. gk = f'(xx)
subject to 3f convex and L-smooth : 0= (x:) ’
- *)3

and we can replace the existence constraints by

fie > fo + 57 llgkl?,
fo > fi + <gk7X* - Xk> + i”gk”{

reaching a (nonconvex) quadratic problem.

fk = f(Xk)
fi = f(xy).

27

Semidefinite reformulation

Quadratic reformulation: “¢£+1 <)" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?

28

Semidefinite reformulation

Quadratic reformulation: “¢£+1 <)" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?

which is linear in terms of

2
G — ||Xk—X*H (Xk—X*ygk> ; F—Tf f, i
=) llel? []

where G = 0 by construction.

28

Semidefinite reformulation

Quadratic reformulation: “¢£+1 <)" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?

which is linear in terms of

2
G — ||Xk—X*H (Xk—X*ygk> F—Tf f, i
=) llel? []

where G = 0 by construction. Hence “qb,’iﬂ <)" (for all f and xy) iff

0> G 2Gao — 29 G12) — ax G
_Gm;_g?f__ak+1(1,1 + 7 G2,2 — 27k G1,2) —ak G11

subject to F1 > F> + iGz,z,
Fo>Fi+ G+ iGz,z,

28

Semidefinite reformulation

Quadratic reformulation: “¢£+1 <)" (for all £ and xy) iff

0> max_ akpr |Ixk — kg — xxlI* — a Ixk — x«|?
Xy Xk 8k > T » Tk

subject to fi, > fi + i”gkﬂz,
fo > fi + (81, xe — i) + 2 |lgll?

which is linear in terms of

2
G — ||Xk—X*H (Xk—X*ygk> F—Tf f, i
=) llel? []

where G = 0 by construction. Hence “qb,’iﬂ <)" (for all f and xy) iff

0> G 2Gao — 29 G12) — ax G
_Gmkgﬁ__ak+1(1,1 + 7 G2,2 — 27k G1,2) —ak G11

subject to F1 > F> + iGz,z,
Fo>Fi+ G+ iGz,z,

which is a regular semidefinite program (SDP).

28

Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is
> 2 -2 -
0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,

29

Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is
> 2 -2 -
0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,
The dual problem has the form (note that no duality gap occurs):
0> min O
A1,A2>0
subject to A1 = Ag,
2

A

Ak — Ak+1 TYkak+1 — =0
A 1 a

Yeaksr — 3 3r(A1+ A2) — akp1? ’

29

Verifying a potential

Final step: inequality verified iff dual SDP is feasible, that is
> 2 -2 -
0> dDax aki1 (G1,1 +7G2,2 —2G12) —ak G11

subject to F1 > F> + iGz,z DAL,
Fo>F1+4+ G2+ ﬁGz,z D2,
The dual problem has the form (note that no duality gap occurs):
0> min O

A1,A22>0

subject to A1 = Ag,
A2
Ak — Ak+1 TYkak+1 — =0
A 1 z
Yeaksr — 3 3r(A1+ A2) — akp1?

hence feasibility problem equivalent to verification “¢£+1 < ¢£” (for all £ and x).

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T @k+17

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

How to find a proof for “¢>£+1 < d)i” (for all £ and xx)?

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

How to find a proof for “¢>£+1 < d)i” (for all £ and xx)?
o Exhibit a dual feasible point,

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

O = ar lxc — x| + bie || £ () ||* + 26k (F (xic) xc —) + die (F(xi) — £)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

How to find a proof for “¢>£+1 < d)i” (for all £ and xx)?
o Exhibit a dual feasible point,
o proof only consists in combining quadratic inequalities.

30

Verifying a potential: final formulation

Akl = X [1? < apllxe — xl|? with xip1 = xe — i f’ (x¢), for all
L-smooth convex f and x;
=4

A

ax —a a -3

IA>0: (k k+1)\ “/(k k+1 %)EO-
Ykak+1 — 3 T T Ak+17

How to verify more complicated potential, such as

2
bf = an Ik — xa|1? + b ||/ ()| * + 26 (F/ (i), Xk — %) + e (F () — £:)?

Exact same tricks, with some adaptations
© additional sample xx11 (for using gxt+1 = f'(xk+1)s fer1 = F(Xk+1)),
o hence 6 inequalities (instead of 2),
o and 3x3 SDP (also on dual side).

How to find a proof for “¢>£+1 < d)i” (for all £ and xx)?
o Exhibit a dual feasible point,
o proof only consists in combining quadratic inequalities.

o If inequality does not hold (for all f and xx), primal solutions are
counter-examples.

30

Toy example: gradient descent

Reformulation as a LMI

Other examples

Concluding remarks

31

Other examples

32

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

33

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1):

Zip1r = (1= 0k)yka1 + 6kzik — Ykf (Vi)

33

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1):

Zip1r = (1= 0k)yka1 + 6kzik — Ykf (Vi)

with carefully chosen values of 7, and 7.

33

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1)7

Zir1 = (1= 0k)yhaa + Skz — it (Vi)
with carefully chosen values of 7, and 7.

Same as before: pick a family of potentials, such as

o= (550s) 10kl () +oulan —xel? + ok (FOx) —)

33

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1)7

Zir1 = (1= 0k)yhaa + Skz — it (Vi)
with carefully chosen values of 7, and 7.

Same as before: pick a family of potentials, such as

o) = (X;/(_X:)*) [Qk ® 4] (F(x¢)) + akllz — xi||? + di (F(xx) — £,
and solve the corresponding SDP numerically:

o dy such that (¢f, ¢5) € Vo,..., (¢hy_1,64) € Vn_1.
1Py 109N

33

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Yirr = (1 — Ti)xk + Thzk,
Xk+1 = Yk+1 — Ok fl(}’k+1)7
Zip1r = (1= 0k)yka1 + 6kzik — Ykf (Vi)

with carefully chosen values of 7, and 7.

Same as before: pick a family of potentials, such as

-
o) = (X;‘/(_ka)*) [Qk ® 4] (X;/(_ka)*> + aullzic = xl1? + die (F(xi) — £),

and solve the corresponding SDP numerically:

o dy such that (¢f, ¢5) € Vo,..., (¢hy_1,64) € Vn_1.
1Py 109N

Few additional technical ingredients allow tuning method's parameters simultaneously.

33

Example for N =100, L = 1: numerics (brown),

Qk[1,1] Qk[1,2]

2 T 2 T

1 N 1 N

0 0
-1] -1]
-2 L] -2 ! J

0 50 100 0 50 100
ag dk

2 T 4 I

T T ,000

O 2,000 |- s
1| N
_2 I | 0 I |

0 50 100 0 50 100
Qg Tk

2 ‘ 200 T

1 150 |]

of 8 100 |]
—-1} y 50 |- R
_2 I 0 I

| |
0 50 100 0 50 100

Qk [27 2]

1
/
0 50 100
Tk
1
S
B | i
0 50 100
Ok
|
|
0 50 100

34

Example for N =100, L = 1: numerics (brown), and analytical solution (red).

Q[1,1] Qx[1,2] Q[2,2]
2 ‘ 2 ‘ 3,000 ‘
(1) B] (1) B] 2,000 |-
1| | 1| | 1,000 /
_2 | l _2 | l 0 |
0 50 100 0 50 100 0 50 100
ag dk Tk
2 T 4 T 2 1
T T ,000 : T
o[2,000 |] o f—
1|] -1k]
—2 | | 0 | |) |
0 50 100 0 50 100 0 50 100
oy Y Ok
2 : 200 ‘ 3 ‘
1 150 | : i
ol . 100 |]
-1} | 50 | g 1
_2 | 0 | 0 |

| |
0 50 100 0 50 100 0 50 100

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zp1 = (1= 0k) ka1 + Oz — Yl (Y1),

with carefully chosen values of 7, and 7.

35

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zky1 = (1= 0k)yhpn + kz — it (Vi)
with carefully chosen values of 7, and 7.

Recovers standard potential (see e.g.,[Nesterov, 1983] or [Bansal & Gupta 2019]):
f = di(F(a) = fi) + §llzx — x|

with dy ~ k2 (more precisely: dy,1 = 1+ dx + /1 + dk).

35

Accelerated /fast gradient method

Consider a fast gradient method for smooth convex minimization:

Vi1 = (1 — 7o)Xk + T2k,
X1 = Y1 — akf (Yrg1),

Zky1 = (1= 0k)yhpn + kz — it (Vi)
with carefully chosen values of 7, and 7.

Recovers standard potential (see e.g.,[Nesterov, 1983] or [Bansal & Gupta 2019]):
¢ = di(F(xi) = £) + 5z — x|
with dy ~ k2 (more precisely: dy,1 = 1+ dx + /1 + dk).
From numerical inspirations, alternate ones also possible, such as
¢ = di(F(3) = £) + P 0l + Sllze =l

with d] ~ k2 (more precisely: di,=1+d +4/1+ gd,’(, red curves on prev. slide).

35

Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Yierr = (1 — 1)k + iz — o’ (i),
Zii1 = (1= 6)yir1 + 0z — v (k) — Vil (Vks1),

but current analysis is more involved (not based on potentials).

36

Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Yierr = (1 — 1)k + iz — o’ (i),
Zii1 = (1= 6)yir1 + 0z — v (k) — Vil (Vks1),

but current analysis is more involved (not based on potentials).

Starting with, for example,

.
o= (5) 1@eeta (Y5) + el el + i (Fm) — £,

we can perform similar steps.

36

Example for N =100, L = 1: numerics (brown),

NHFEFORFN NHFOFEN

NFEFOFEDN

Qx[1,1]
1
| |
0 50 100
ay
1
]
0 50 100
ak
| 1
7‘]

30
20

200
150
100

50

Qk[112]

0 50 100

Tk
1
S
B | i
0 50 100
Ok
|
|
0 50 100

37

Example for N =100, L = 1: numerics (brown), and analytical solution (red).

NHFEFORFN NHFOFEN

NFEFOFEDN

Qx[1,1]
1
| |
0 50 100
ay
1
]
0 50 100
(673
| 1
7‘]
| |
0 50 100

30
20
10

6,000

4,000 |

2,000

200
150
100

50

Q«[1,2]
1
L e e
0 50 100
dk
1
| |
0 50 100
Yk
|
|
0 50 100

Qk[27 2]

0
—1,000
—2,000 |
—3,000
0
Tk
2 T
y
0 | ™
1l i
) |
0 50 100
Ok
3 T
2 - n
1
0 L
0 50 100

37

Optimized gradient method

Optimized gradient methods (Kim & Fessler, 2016) can be factorized in a similar form

Vir1 = (L — 7)yk + ez — arf’(yi),
Zker = (1= 8i)yk1 + 6,z — v (k) — Vi (Vks1),

but current analysis is more involved (not based on potentials).
From numerical inspiration, we get
2
S = d¢ (Fvi) = F = [F 0 [°) + Sllzic — xi1?,

with d}/ ~ k2 (more precisely: d) , =1+d/+/1+2d]/, red curves on prev. slide)

38

Conjugate gradient method

Conjugate gradient method (“ideal version")
Xpr1 = argmin, {f(x) : x € xo + span{f’(x0), f'(x1),..., f (xx)}}.

Steps to perform the analysis are slightly trickier (reference at the end), but
¢ analysis is exactly the same as that of the optimized gradient method,

o achieve exactly the lower complexity bound for the class of problems.

39

Concluding remarks

Overall philosophy:

40

Concluding remarks

Overall philosophy:

o numerically obtain best “fixed-horizon” potential-based guarantees,

40

Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,

o helps designing & benchmarking proofs,

40

Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

40

Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

o proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

¢ inexact, randomized, and stochastic variants, etc.
o first attempts on adaptive methods (line searches, Polyak steps),

o also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

. and probably many others!

40

Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

o proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

¢ inexact, randomized, and stochastic variants, etc.
o first attempts on adaptive methods (line searches, Polyak steps),

o also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

. and probably many others!

. and open questions:

40

Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon” potential-based guarantees,
o helps designing & benchmarking proofs,

More examples?

o proximal/projected variants, splitting methods, mirror descent/Bregman
gradient, etc.

¢ inexact, randomized, and stochastic variants, etc.
o first attempts on adaptive methods (line searches, Polyak steps),

o also other classes of functions and problems (nonsmooth, weakly convex, and
indicator functions, monotone inclusions, variational inequalities), etc.

. and probably many others!

. and open questions:
o beyond Euclidean geometry?
o Higher-order methods?
© Adaptive methods (BFGS, nonlinear conjugate gradients)?
o

Beyond worst-case analyses?

A few references

41

A few references

Shameless advertisement:

<o

Radu-Alexandru Dragomir, T, Alexandre d'Aspremont, Jérdme Bolte. “Optimal complexity and
certification of Bregman first-order methods”. Preprint 2019.

Mathieu Barré, T, Francis Bach. “Principled Analyses and Design of First-Order Methods with
Inexact Proximal Operators”’. Preprint 2020.

Mathieu Barré, T, Alexandre d’Aspremont. “Complexity Guarantees for Polyak Steps with
Momentum”. COLT 2020.

41

A few references

Shameless advertisement:

<o

<o

Radu-Alexandru Dragomir, T, Alexandre d'Aspremont, Jérdme Bolte. “Optimal complexity and
certification of Bregman first-order methods”. Preprint 2019.

Mathieu Barré, T, Francis Bach. “Principled Analyses and Design of First-Order Methods with
Inexact Proximal Operators”. Preprint 2020.

Mathieu Barré, T, Alexandre d’Aspremont. “Complexity Guarantees for Polyak Steps with
Momentum”. COLT 2020.

References more thoroughly treated in the papers. Explicitly mentioned in this presentation:

<o

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 1983.

Amir Beck, Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems”. SIAM Journal on Imaging Sciences, 2009.

Yoel Drori, Marc Teboulle. “Performance of first-order methods for smooth convex minimization:

a novel approach”. Mathematical Programming, 2014.

Donghwan Kim, Jeffrey Fessler. “Optimized first-order methods for smooth convex
minimization”. Mathematical Programming, 2016.

Laurent Lessard, Benjamin Recht, Andrew Packard. “Analysis and design of optimization
algorithms via integral quadratic constraints’. SIAM Journal on Optimization, 2016.

Bin Hu, Laurent Lessard. “Dissipativity Theory for Nesterov's Accelerated Method”. ICML, 2017.

Nikhil Bansal, Anupam Gupta. “Potential-function proofs for first-order methods”. Theory of
Computing, 2019.

41

Thanks! Questions?

www.di.ens.fr/~ataylor/

Codes (on GITHUB)
¢ ADRIENTAYLOR/POTENTIAL-FUNCTIONS-FOR-FIRST-ORDER-METHODS
¢ ADRIENTAYLOR/PERFORMANCE- ESTIMATION-TOOLBOX

Thanks! Questions?

www.di.ens.fr/~ataylor/

Codes (on GITHUB)
¢ ADRIENTAYLOR/POTENTIAL-FUNCTIONS-FOR-FIRST-ORDER-METHODS
¢ ADRIENTAYLOR/PERFORMANCE- ESTIMATION-TOOLBOX

Tutorial (computer-assisted proofs in optimization):
© HTTPS://FRANCISBACH.COM /COMPUTER-AIDED-ANALYSES /

Thanks! Questions?

www.di.ens.fr/~ataylor/

Codes (on GITHUB)
¢ ADRIENTAYLOR/POTENTIAL-FUNCTIONS-FOR-FIRST-ORDER-METHODS
¢ ADRIENTAYLOR/PERFORMANCE- ESTIMATION-TOOLBOX
Tutorial (computer-assisted proofs in optimization):
© HTTPS://FRANCISBACH.COM /COMPUTER-AIDED-ANALYSES /
Presentation mainly based on
¢ T., Francis Bach. “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions”, 2019.
¢ Yoel Drori, T. “Efficient first-order methods for convex minimization: a
constructive approach”, 2019.
o T., Frangois Glineur, Julien Hendrickx. “Smooth strongly convex
interpolation and exact worst-case performance of first-order methods”, 2017.

	Toy example: gradient descent
	Reformulation as a LMI
	Other examples
	Concluding remarks

