Computer-aided worst-case analyses for operator splitting

Adrien Taylor

ICCOPT — August 2019

Ernest Ryu (UCLA)

Carolina Bergeling (Lund)

Pontus Giselsson (Lund)

"Operator splitting performance estimation: Tight contraction factors and optimal parameter selection" (2018, arXiv:1812.00146)

Computer-assisted analyses for optimization & monotone inclusions

Computer-assisted analyses for optimization & monotone inclusions

(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019), and few others.

Computer-assisted analyses for optimization & monotone inclusions

(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019), and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)

Computer-assisted analyses for optimization & monotone inclusions

(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019), and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford) (Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson 2017), (Moursi & Vandenberghe 2018), and many others.

Take-home messages

Worst-cases are solutions to optimization problems.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in optimization and monotone inclusions!

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

consists in iterating:

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

consists in iterating:

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ \gamma h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ \gamma f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}). \end{split}$$

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

consists in iterating:

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ \gamma h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ \gamma f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}). \end{split}$$

Let A, and B be maximally monotone operators; and let $J_{\gamma A} := (I + \gamma A)^{-1}$ and $J_{\gamma B} := (I + \gamma B)^{-1}$ be the respective resolvents.

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

consists in iterating:

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ \gamma h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ \gamma f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}). \end{split}$$

Let A, and B be maximally monotone operators; and let $J_{\gamma A} := (I + \gamma A)^{-1}$ and $J_{\gamma B} := (I + \gamma B)^{-1}$ be the respective resolvents.

Monotone inclusion problem:

$$\inf_{x\in\mathbb{R}^d} 0\in A(x)+B(x),$$

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

consists in iterating:

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ \gamma h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ \gamma f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}). \end{split}$$

Let A, and B be maximally monotone operators; and let $J_{\gamma A} := (I + \gamma A)^{-1}$ and $J_{\gamma B} := (I + \gamma B)^{-1}$ be the respective resolvents.

Monotone inclusion problem:

$$\inf_{x\in\mathbb{R}^d} 0\in A(x)+B(x),$$

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

$$w_{k+1} = (I - \theta J_{\gamma B} + \theta J_{\gamma A} (2J_{\gamma B} - I))w_k.$$

Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

consists in iterating:

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ \gamma h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ \gamma f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}). \end{split}$$

Let A, and B be maximally monotone operators; and let $J_{\gamma A} := (I + \gamma A)^{-1}$ and $J_{\gamma B} := (I + \gamma B)^{-1}$ be the respective resolvents.

Monotone inclusion problem:

$$\inf_{x\in\mathbb{R}^d} 0\in A(x)+B(x),$$

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

$$w_{k+1} = (I - \theta J_{\gamma B} + \theta J_{\gamma A} (2J_{\gamma B} - I))w_k.$$

Recover optimization setting with $A = \partial f$ and $B = \partial h$.

Question: When is the DRS iteration a contraction? What is the smallest ρ such that

$$||w_1 - w'_1|| \le \rho ||w_0 - w'_0||,$$

for all $w_0, w_0' \in \mathbb{R}^d$ and w_1, w_1' generated with DRS from respectively w_0 and w_0' ?

Question: When is the DRS iteration a contraction? What is the smallest ρ such that

 $||w_1 - w'_1|| \le \rho ||w_0 - w'_0||,$

for all $w_0, w'_0 \in \mathbb{R}^d$ and w_1, w'_1 generated with DRS from respectively w_0 and w'_0 ?

 $\diamond~$ Optimization problem to find sharp contraction factor:

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & w_{1} \text{ generated by DR from } w_{0}, \\ & w_{1}' \text{ generated by DR from } w_{0}', \\ & \text{assumptions on } A \text{ and } B. \end{array}$$

which has operators A and B as variables.

Nontrivial rates by assuming something more on A and/or B.

Nontrivial rates by assuming something more on A and/or B.

Pick assumptions among the following:

Nontrivial rates by assuming something more on A and/or B.

Pick assumptions among the following:

A convex function f is commonly assumed to be (for all x, y ∈ ℝ^d):
 μ-strongly convex f(x) ≥ f(y) + ⟨∂f(y), x - y⟩ + μ/2 ||x - y||²,
 L-smooth f(x) ≤ f(y) + ⟨f'(y), x - y⟩ + μ/2 ||x - y||².

Nontrivial rates by assuming something more on A and/or B.

Pick assumptions among the following:

- A convex function f is commonly assumed to be (for all x, y ∈ ℝ^d):
 μ-strongly convex f(x) ≥ f(y) + ⟨∂f(y), x y⟩ + μ/2 ||x y||²,
 L-smooth f(x) ≤ f(y) + ⟨f'(y), x y⟩ + μ/2 ||x y||².

DR contraction factors

Table: Contraction factors for DR: assumptions beyond max. monotonicity.

#	Properties for A	Properties for B	Reference	Sharp	Notes
01	∂f , f : str. cvx & smooth	∂g	[1,2]	~	
02	∂f , f : str. cvx	∂g , g : smooth	[3]	×	1.
M1	str. mono. & cocoercive	-	[3]	~	
M2	str. mono. & Lipschitz	-	[3]	~	2.
М3	str. mono.	cocoercive	[3]	×	
M4	str. mono.	Lipschitz	[4]	×	3.

- 1. sharp rates for some parameter choices in [3]
- 2. Lions and Mercier [5] provided conservative rate in this setting
- 3. sharp rate when B is skew linear in [4]

^[1] Giselsson, Boyd, Diagonal Scaling in DRS and ADMM, 2014.

^[2] Giselsson, Boyd, Linear Convergence and Metric Selection in DRS and ADMM, 2017.

^[3] Giselsson, Tight Global Linear Convergence Rate Bounds for DRS, 2017.

^[4] Moursi, Vandenberghe. DRS for a Lipschitz continuous and a strongly monotone operator, 2018.

^[5] Lions, Mercier. Splitting Algorithms for the Sum of Two Nonlinear Operators, 1979.

Question: When is the DRS iteration a contraction? What is the smallest ρ such that

$$||w_1 - w'_1|| \le \rho ||w_0 - w'_0||,$$

for all $w_0, w'_0 \in \mathbb{R}^d$ and w_1, w'_1 generated with DRS from respectively w_0 and w'_0 ?

Question: When is the DRS iteration a contraction? What is the smallest ρ such that

 $||w_1 - w'_1|| \le \rho ||w_0 - w'_0||,$

for all $w_0, w'_0 \in \mathbb{R}^d$ and w_1, w'_1 generated with DRS from respectively w_0 and w'_0 ?

 $\diamond~$ Optimization problem to find sharp contraction factor:

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \text{subject to} & w_{1} \text{ generated by DR from } w_{0}, \\ & w_{1}' \text{ generated by DR from } w_{0}', \\ & A \text{ is } \mu\text{-strongly monotone and } B \text{ is } \beta\text{-coccercive} \end{array}$$

which has operators A and B as variables.

Question: When is the DRS iteration a contraction? What is the smallest ρ such that

 $||w_1 - w'_1|| \le \rho ||w_0 - w'_0||,$

for all $w_0, w'_0 \in \mathbb{R}^d$ and w_1, w'_1 generated with DRS from respectively w_0 and w'_0 ?

♦ Optimization problem to find sharp contraction factor:

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \text{subject to} & w_{1} \text{ generated by DR from } w_{0}, \\ & w_{1}' \text{ generated by DR from } w_{0}', \\ & A \text{ is } \mu \text{-strongly monotone and } B \text{ is } \beta \text{-coccercive} \end{array}$$

which has operators A and B as variables.

♦ Optimal value can be found via convex optimization! (3x3 SDP)

♦ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \underset{x_{1},x_{1}',y_{1},y_{1}'}{\text{subject to}} \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \underset{x_{1},x_{1}',y_{1},y_{1}'}{\text{subject to}} & x_{1} = J_{\gamma B}(w_{0}), \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

$$\begin{array}{l} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\max x_{1},x_{1}',y_{1},y_{1}'} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & x_{1}=J_{\gamma B}(w_{0}), \\ & x_{1}'=J_{\gamma B}(w_{0}'), \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

$$\begin{array}{l} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\max x_{1},x_{1}',y_{1},y_{1}'} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & x_{1}=J_{\gamma B}(w_{0}), \\ & x_{1}'=J_{\gamma B}(w_{0}'), \\ & y_{1}=J_{\gamma A}(2x_{1}-w_{0}), \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

$$\begin{array}{l} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \text{subject to} & x_{1} = J_{\gamma B}(w_{0}), \\ & x_{1}' = J_{\gamma B}(w_{0}'), \\ & y_{1} = J_{\gamma A}(2x_{1} - w_{0}), \\ & y_{1}' = J_{\gamma A}(2x_{1}' - w_{0}'), \end{array}$$
◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

 \diamond Require w_1 and w'_1 to be generated by DR:

$$\begin{array}{ll} \underset{A,B,w_0,w'_0,w_1,w'_1}{\text{maximize}} & \frac{\|w_1 - w'_1\|}{\|w_0 - w'_0\|} \\ & \text{subject to} & x_1 = J_{\gamma B}(w_0), \\ & x'_1 = J_{\gamma B}(w'_0), \\ & y_1 = J_{\gamma A}(2x_1 - w_0), \\ & y'_1 = J_{\gamma A}(2x'_1 - w'_0), \\ & w_1 = w_0 + \theta(y_1 - x_1), \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

 \diamond Require w_1 and w'_1 to be generated by DR:

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \\ \text{subject to} & x_{1} = J_{\gamma B}(w_{0}), \\ & x_{1}' = J_{\gamma B}(w_{0}'), \\ & y_{1} = J_{\gamma A}(2x_{1} - w_{0}), \\ & y_{1}' = J_{\gamma A}(2x_{1}' - w_{0}'), \\ & w_{1} = w_{0} + \theta(y_{1} - x_{1}), \\ & w_{1}' = w_{0}' + \theta(y_{1}' - x_{1}'), \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

 \diamond Require w_1 and w'_1 to be generated by DR:

$$\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \text{subject to} & x_{1} = J_{\gamma B}(w_{0}), \\ & x_{1}' = J_{\gamma B}(w_{0}), \\ & y_{1} = J_{\gamma A}(2x_{1} - w_{0}), \\ & y_{1}' = J_{\gamma A}(2x_{1}' - w_{0}'), \\ & w_{1} = w_{0} + \theta(y_{1} - x_{1}), \\ & w_{1}' = w_{0}' + \theta(y_{1}' - x_{1}'), \\ & A \text{ is } \mu\text{-strongly monotone and } B \text{ is } \beta\text{-cocoercive.} \end{array}$$

◊ Recall DR splitting:

$$\begin{aligned} x_1 &= J_{\gamma B}(w_0) & \text{with } J_{\gamma B} &:= (I + \gamma B)^{-1}, \\ y_1 &= J_{\gamma A}(2x_1 - w_0) & \text{with } J_{\gamma A} &:= (I + \gamma A)^{-1}, \\ w_1 &= w_0 + \theta(y_1 - x_1). \end{aligned}$$

 \diamond Require w_1 and w'_1 to be generated by DR:

 $\begin{array}{ll} \underset{A,B,w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \\ \text{subject to} & x_{1} = J_{\gamma B}(w_{0}), \\ & x_{1}' = J_{\gamma B}(w_{0}'), \\ & y_{1} = J_{\gamma A}(2x_{1} - w_{0}), \\ & y_{1}' = J_{\gamma A}(2x_{1}' - w_{0}'), \\ & w_{1} = w_{0} + \theta(y_{1} - x_{1}), \\ & w_{1}' = w_{0}' + \theta(y_{1}' - x_{1}'), \\ & A \text{ is } \mu\text{-strongly monotone and } B \text{ is } \beta\text{-coccercive.} \end{array}$

◊ Infinite-dimensional problem: two operators as variables!

♦ Remove A and B from the variables?

 \diamond Remove A and B from the variables?

$$\max_{\substack{w_0, w'_0, w_1, w'_1 \\ x_1, x'_1, y_1, y'_1}} \frac{\|w_1 - w'_1\|}{\|w_0 - w'_0\|}$$

subject to

 \diamond Remove A and B from the variables?

$$\begin{array}{ll} \underset{\substack{w_0,w'_0,w_1,w'_1 \\ x_1,x'_1,y_1,y'_1}}{\text{maximize}} & \frac{\|w_1 - w'_1\|}{\|w_0 - w'_0\|} \\ \\ \text{subject to} & \exists B \ \beta \text{-coccoercive such that} \ \begin{cases} \begin{array}{c} x_1 = J_{\gamma B}(w_0), \\ x'_1 = J_{\gamma B}(w'_0), \end{array} \end{cases}$$

 \diamond Remove A and B from the variables?

$$\begin{array}{l} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & \exists B \ \beta\text{-coccoercive such that} \ \begin{cases} x_{1}=J_{\gamma B}(w_{0}), \\ x_{1}'=J_{\gamma B}(w_{0}'), \\ \exists A \ \mu\text{-strongly monotone such that} \end{cases} \begin{cases} y_{1}=J_{\gamma A}(2x_{1}-w_{0}), \\ y_{1}'=J_{\gamma A}(2x_{1}'-w_{0}'), \end{cases} \end{cases}$$

♦ Remove A and B from the variables?

$$\begin{array}{l} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & \exists B \ \beta \text{-coccoercive such that} \ \left\{ \begin{array}{l} x_{1} = J_{\gamma B}(w_{0}), \\ x_{1}' = J_{\gamma B}(w_{0}'), \\ \exists A \ \mu \text{-strongly monotone such that} \ \left\{ \begin{array}{l} y_{1} = J_{\gamma A}(2x_{1}-w_{0}), \\ y_{1}' = J_{\gamma A}(2x_{1}'-w_{0}'), \\ w_{1} = w_{0} + \theta(y_{1}-x_{1}), \\ w_{1}' = w_{0}' + \theta(y_{1}'-x_{1}'). \end{array} \right. \end{array} \right.$$

♦ Remove A and B from the variables?

$$\begin{array}{l} \underset{w_{0},w_{0},w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1} - w_{1}'\|}{\|w_{0} - w_{0}'\|} \\ \text{subject to} & \exists B \ \beta \text{-coccoercive such that} \ \left\{ \begin{array}{l} x_{1} = J_{\gamma B}(w_{0}), \\ x_{1}' = J_{\gamma B}(w_{0}'), \\ \exists A \ \mu \text{-strongly monotone such that} \end{array} \right\} \left\{ \begin{array}{l} y_{1} = J_{\gamma A}(2x_{1} - w_{0}), \\ y_{1}' = J_{\gamma A}(2x_{1}' - w_{0}'), \\ w_{1} = w_{0} + \theta(y_{1} - x_{1}), \\ w_{1}' = w_{0}' + \theta(y_{1}' - x_{1}'). \end{array} \right\}$$

♦ How to remove existence constraints?

Interpolation of operators

Interpolation of operators

 \diamond Define the duplets (x, x_+) and (y, y_+) . Then

$$\langle x-y, x_+-y_+ \rangle \geq (\gamma \mu + 1) \|x_+-y_+\|^2$$

iff there exists a μ -strongly monotone operator A such that

$$- x_+ = J_{\gamma A}(x)$$

$$- y_+ = J_{\gamma A}(y)$$

Interpolation of operators

 \diamond Define the duplets (x, x_+) and (y, y_+) . Then

$$\langle x - y, x_{+} - y_{+} \rangle \ge (\gamma \mu + 1) \|x_{+} - y_{+}\|^{2}$$

iff there exists a μ -strongly monotone operator A such that

$$- x_+ = J_{\gamma A}(x)$$

$$- y_+ = J_{\gamma A}(y)$$

♦ Define the duplets (x, x_+) and (y, y_+) . Then

$$\langle x - y, x_{+} - y_{+} \rangle \geq \frac{\beta}{\gamma} \|x - x_{+} - (y - y_{+})\|^{2} + \|x_{+} - y_{+}\|^{2}$$

iff there exists a $\beta\text{-}\mathrm{cocoercive}$ operator B such that

$$\begin{array}{l} - \quad x_+ = J_{\gamma B}(x) \\ - \quad y_+ = J_{\gamma B}(y) \end{array}$$

◊ Interpolation conditions allows to remove red constraints

$$\begin{array}{l} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & \exists B \ \beta\text{-coccoercive such that} \ \begin{cases} x_{1} = J_{\gamma B}(w_{0}), \\ x_{1}' = J_{\gamma B}(w_{0}'), \\ \\ y_{1}' = J_{\gamma A}(2x_{1}-w_{0}), \\ y_{1}' = J_{\gamma A}(2x_{1}'-w_{0}'), \\ \\ w_{1} = w_{0} + \theta(y_{1}-x_{1}), \\ \\ w_{1}' = w_{0}' + \theta(y_{1}'-x_{1}'). \end{array}$$

♦ Interpolation conditions allows to remove red constraints

$$\begin{array}{ll} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \\ \text{subject to} & \exists B \ \beta \text{-coccoercive such that} \ \left\{ \begin{array}{l} x_{1} = J_{\gamma B}(w_{0}), \\ x_{1}' = J_{\gamma B}(w_{0}'), \\ \\ \exists A \ \mu \text{-strongly monotone such that} \ \left\{ \begin{array}{l} y_{1} = J_{\gamma A}(2x_{1}-w_{0}), \\ y_{1}' = J_{\gamma A}(2x_{1}'-w_{0}'), \\ \\ w_{1} = w_{0} + \theta(y_{1}-x_{1}), \\ \\ w_{1}' = w_{0}' + \theta(y_{1}'-x_{1}'). \end{array} \right. \end{array} \right.$$

◊ replacing them by:

$$\langle y_1 - y'_1, 2(x_1 - x'_1) - (w_0 - w'_0) \rangle \ge (\gamma \mu + 1) ||y_1 - y'_1||^2,$$

and

$$\langle w_0 - w'_0, x_1 - x'_1 \rangle \geq \frac{\beta}{\gamma} \|w_0 - w'_0 - (x_1 - x'_1)\|^2 + \|x_1 - x'_1\|^2$$

♦ Interpolation conditions allows to remove red constraints

$$\begin{array}{ll} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \\ \text{subject to} & \exists B \ \beta \text{-coccoercive such that} \ \left\{ \begin{array}{l} x_{1} = J_{\gamma B}(w_{0}), \\ x_{1}' = J_{\gamma B}(w_{0}'), \\ \\ \exists A \ \mu \text{-strongly monotone such that} \ \left\{ \begin{array}{l} y_{1} = J_{\gamma A}(2x_{1}-w_{0}), \\ y_{1}' = J_{\gamma A}(2x_{1}'-w_{0}'), \\ \\ w_{1} = w_{0} + \theta(y_{1}-x_{1}), \\ \\ w_{1}' = w_{0}' + \theta(y_{1}'-x_{1}'). \end{array} \right. \end{array} \right.$$

◊ replacing them by:

$$\langle y_1 - y'_1, 2(x_1 - x'_1) - (w_0 - w'_0) \rangle \ge (\gamma \mu + 1) ||y_1 - y'_1||^2,$$

and

$$\langle w_0 - w'_0, x_1 - x'_1 \rangle \geq \frac{\beta}{\gamma} \|w_0 - w'_0 - (x_1 - x'_1)\|^2 + \|x_1 - x'_1\|^2.$$

◊ Note: optimal value is the same! No relaxation.

Reformulations (cont'd)

Reformulations (cont'd)

♦ Equivalent problem without operator class constraints:

$$\begin{array}{ll} \underset{w_{0},w_{0}',w_{1},w_{1}'}{\text{maximize}} & \frac{\|w_{1}-w_{1}'\|}{\|w_{0}-w_{0}'\|} \\ \text{subject to} & \left\langle y_{1}-y_{1}',2(x_{1}-x_{1}')-(w_{0}-w_{0}')\right\rangle \geq (\gamma\mu+1)\|y_{1}-y_{1}'\|^{2}, \\ & \left\langle w_{0}-w_{0}',x_{1}-x_{1}'\right\rangle \geq \frac{\beta}{\gamma}\|w_{0}-w_{0}'-(x_{1}-x_{1}')\|^{2}+\|x_{1}-x_{1}'\|^{2}, \\ & w_{1}=w_{k}+\theta(y_{1}-x_{1}), \\ & w_{1}'=w_{k}+\theta(y_{1}'-x_{1}'). \end{array}$$

Reformulations (cont'd)

♦ Equivalent problem without operator class constraints:

$$\begin{split} \underset{\substack{w_0, w'_0, w_1, w'_1 \\ x_1, x'_1, y_1, y'_1}}{\text{maximize}} & \frac{\|w_1 - w'_1\|}{\|w_0 - w'_0\|} \\ \text{subject to} & \left\langle y_1 - y'_1, 2(x_1 - x'_1) - (w_0 - w'_0) \right\rangle \geq (\gamma \mu + 1) \|y_1 - y'_1\|^2, \\ & \left\langle w_0 - w'_0, x_1 - x'_1 \right\rangle \geq \frac{\beta}{\gamma} \|w_0 - w'_0 - (x_1 - x'_1)\|^2 + \|x_1 - x'_1\|^2, \\ & w_1 = w_k + \theta(y_1 - x_1), \\ & w'_1 = w_k + \theta(y'_1 - x'_1). \end{split}$$

◊ Yet another reformulation

$$\begin{split} \underset{\substack{w_0, w_0'\\ x_1, x_1', y_1, y_1'}}{\text{maximize}} & \frac{\|w_0 + \theta(y_1 - x_1) - w_0 - \theta(y_1' - x_1')\|^2}{\|w_0 - w_0'\|^2} \\ \text{subject to} & \langle y_1 - y_1', 2(x_1 - x_1') - (w_0 - w_0') \rangle \geq (\gamma \mu + 1) \|y_1 - y_1'\|^2, \\ & \langle w_0 - w_0', x_1 - x_1' \rangle \geq \frac{\beta}{\gamma} \|w_0 - w_0' - (x_1 - x_1')\|^2 + \|x_1 - x_1'\|^2. \end{split}$$

◊ All parts of optimization problem are quadratic:

$$\begin{array}{l} \underset{\substack{w_0,w_0'\\ x_1,x_1',y_1,y_1'}}{\text{maximize}} & \frac{\|w_0 + \theta(y_1 - x_1) - w_0 - \theta(y_1' - x_1')\|^2}{\|w_0 - w_0'\|^2} \\ \text{subject to} & \left\langle y_1 - y_1', 2(x_1 - x_1') - (w_0 - w_0') \right\rangle \ge (\gamma \mu + 1) \|y_1 - y_1'\|^2, \\ & \left\langle w_0 - w_0', x_1 - x_1' \right\rangle \ge \frac{\beta}{\gamma} \|w_0 - w_0' - (x_1 - x_1')\|^2 + \|x_1 - x_1'\|^2. \end{array}$$

♦ All parts of optimization problem are quadratic:

$$\begin{split} \underset{\substack{w_{0},w_{0}'\\x_{1},x_{1}',y_{1},y_{1}'}{\text{maximize}} & \frac{\|w_{0}+\theta(y_{1}-x_{1})-w_{0}-\theta(y_{1}'-x_{1}')\|^{2}}{\|w_{0}-w_{0}'\|^{2}}\\ \text{subject to} & \left\langle y_{1}-y_{1}',2(x_{1}-x_{1}')-(w_{0}-w_{0}')\right\rangle \geq (\gamma\mu+1)\|y_{1}-y_{1}'\|^{2},\\ & \left\langle w_{0}-w_{0}',x_{1}-x_{1}'\right\rangle \geq \frac{\beta}{\gamma}\|w_{0}-w_{0}'-(x_{1}-x_{1}')\|^{2}+\|x_{1}-x_{1}'\|^{2}. \end{split}$$

 $\diamond~$ They can therefore be represented with a Gram matrix. Let

$$G = \begin{bmatrix} \|w_0 - w'_0\|^2 & \langle w_0 - w'_0, x_1 - x'_1 \rangle & \langle w_0 - w'_0, y_1 - y'_1 \rangle \\ \langle x_1 - x'_1, w_0 - w'_0 \rangle & \|x_1 - x'_1\|^2 & \langle x_1 - x'_1, y_1 - y'_1 \rangle \\ \langle y_1 - y'_1, w_0 - w'_0 \rangle & \langle y_1 - y'_1, x_1 - x'_1 \rangle & \|y_1 - y'_1\|^2 \end{bmatrix}$$

where $G \succeq 0$ by construction

♦ All parts of optimization problem are quadratic:

$$\begin{array}{l} \underset{\substack{w_0, w_0'\\ x_1, x_1', y_1, y_1'}}{\text{maximize}} & \frac{\|w_0 + \theta(y_1 - x_1) - w_0 - \theta(y_1' - x_1')\|^2}{\|w_0 - w_0'\|^2} \\ \text{subject to} & \left\langle y_1 - y_1', 2(x_1 - x_1') - (w_0 - w_0') \right\rangle \ge (\gamma \mu + 1) \|y_1 - y_1'\|^2, \\ & \left\langle w_0 - w_0', x_1 - x_1' \right\rangle \ge \frac{\beta}{\gamma} \|w_0 - w_0' - (x_1 - x_1')\|^2 + \|x_1 - x_1'\|^2. \end{array}$$

 $\diamond~$ They can therefore be represented with a Gram matrix. Let

$$G = \begin{bmatrix} \|w_0 - w'_0\|^2 & \langle w_0 - w'_0, x_1 - x'_1 \rangle & \langle w_0 - w'_0, y_1 - y'_1 \rangle \\ \langle x_1 - x'_1, w_0 - w'_0 \rangle & \|x_1 - x'_1\|^2 & \langle x_1 - x'_1, y_1 - y'_1 \rangle \\ \langle y_1 - y'_1, w_0 - w'_0 \rangle & \langle y_1 - y'_1, x_1 - x'_1 \rangle & \|y_1 - y'_1\|^2 \end{bmatrix}$$

where $G \succeq 0$ by construction, and reformulate to:

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \frac{\operatorname{Tr}(A_{o}G)}{\operatorname{Tr}(A_{s}G)} \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 \\ & \operatorname{Tr}(A_{2}G) \geq 0 \\ & G \succeq 0. \end{array}$$

with appropriate A_o, A_s, A_1, A_2 for picking correct elements in G

◊ All parts of optimization problem are quadratic:

$$\begin{array}{l} \underset{\substack{w_{0},w_{0}\\ x_{1},x_{1}',y_{1},y_{1}'}{\text{maximize}} & \frac{\|w_{0} + \theta(y_{1} - x_{1}) - w_{0} - \theta(y_{1}' - x_{1}')\|^{2}}{\|w_{0} - w_{0}'\|^{2}} \\ \text{subject to} & \left\langle y_{1} - y_{1}', 2(x_{1} - x_{1}') - (w_{0} - w_{0}')\right\rangle \geq (\gamma \mu + 1) \|y_{1} - y_{1}'\|^{2}, \\ & \left\langle w_{0} - w_{0}', x_{1} - x_{1}'\right\rangle \geq \frac{\beta}{\gamma} \|w_{0} - w_{0}' - (x_{1} - x_{1}')\|^{2} + \|x_{1} - x_{1}'\|^{2}. \end{array}$$

 $\diamond~$ They can therefore be represented with a Gram matrix. Let

$$G = \begin{bmatrix} \|w_0 - w'_0\|^2 & \langle w_0 - w'_0, x_1 - x'_1 \rangle & \langle w_0 - w'_0, y_1 - y'_1 \rangle \\ \langle x_1 - x'_1, w_0 - w'_0 \rangle & \|x_1 - x'_1\|^2 & \langle x_1 - x'_1, y_1 - y'_1 \rangle \\ \langle y_1 - y'_1, w_0 - w'_0 \rangle & \langle y_1 - y'_1, x_1 - x'_1 \rangle & \|y_1 - y'_1\|^2 \end{bmatrix}$$

where $G \succeq 0$ by construction, and reformulate to:

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \frac{\operatorname{Ir}(A_{o}G)}{\operatorname{Tr}(A_{s}G)} \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 \\ & \operatorname{Tr}(A_{2}G) \geq 0 \\ & G \succeq 0. \end{array}$$

with appropriate A_o, A_s, A_1, A_2 for picking correct elements in G \diamond Note: assuming $w_0, w'_0, x_1, x'_1, y_1, y'_1 \in \mathbb{R}^d$ with $d \ge 3$, same optimal cost! Last part in convexification

Last part in convexification

 The constraints are positively homogeneous of deg. 1 and the cost is constant under scaling of G

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \frac{\operatorname{Ir}(A_{o}G)}{\operatorname{Tr}(A_{s}G)}\\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0\\ & \operatorname{Tr}(A_{2}G) \geq 0\\ & G \succeq 0. \end{array}$$

Last part in convexification

 The constraints are positively homogeneous of deg. 1 and the cost is constant under scaling of G

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \frac{\operatorname{Ir}(A_{o}G)}{\operatorname{Tr}(A_{s}G)}\\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0\\ & \operatorname{Tr}(A_{2}G) \geq 0\\ & G \succeq 0. \end{array}$$

◊ Therefore an equivalent *convex* problem is

$$\begin{array}{ll} \underset{G}{\operatorname{maximize}} & \operatorname{Tr}(A_{o}G) \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 \\ & \operatorname{Tr}(A_{2}G) \geq 0 \\ & \operatorname{Tr}(A_{s}G) = 1 \\ & G \succeq 0. \end{array}$$

which is a 3×3 semidefinite program.

 $\diamond~$ Introduce dual variables $\tau,~\lambda_1$ and λ_2

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \operatorname{Tr}(A_{o}G) \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 & : \lambda_{1} \\ & \operatorname{Tr}(A_{2}G) \geq 0 & : \lambda_{2} \\ & \operatorname{Tr}(A_{s}G) = 1 & : \tau \\ & G \succeq 0 \end{array}$$

 $\diamond~$ Introduce dual variables τ , λ_1 and λ_2

$$\begin{array}{ll} \underset{G}{\text{maximize}} & \operatorname{Tr}(A_{o}G) \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 & : \lambda_{1} \\ & \operatorname{Tr}(A_{2}G) \geq 0 & : \lambda_{2} \\ & \operatorname{Tr}(A_{s}G) = 1 & : \tau \\ & G \succ 0 \end{array}$$

◊ Dual problem becomes

$$\begin{array}{ll} \underset{\tau,\lambda_{1},\lambda_{2}}{\text{minimize}} & \tau \\ \text{subject to} & \lambda_{i} \geq 0 \\ & S = A_{o} + \sum_{i=1}^{2} \lambda_{i}A_{i} - \tau A_{s} \preceq 0 \end{array}$$

 $\diamond~$ Introduce dual variables $\tau,~\lambda_1$ and λ_2

 $\begin{array}{ll} \underset{G}{\text{maximize}} & \operatorname{Tr}(A_{o}G) \\ \text{subject to} & \operatorname{Tr}(A_{1}G) \geq 0 & : \lambda_{1} \\ & \operatorname{Tr}(A_{2}G) \geq 0 & : \lambda_{2} \\ & \operatorname{Tr}(A_{s}G) = 1 & : \tau \\ & G \succeq 0 \end{array}$

◊ Dual problem becomes

$$\begin{array}{ll} \underset{\tau,\lambda_1,\lambda_2}{\min initial} & \tau \\ \text{subject to} & \lambda_i \geq 0 \\ & S = A_o + \sum_{i=1}^2 \lambda_i A_i - \tau A_s \preceq 0 \end{array}$$

◊ In this example:

$$S = \begin{bmatrix} -\tau - \frac{\beta\lambda_2}{\gamma} + 1 & -\theta + \frac{\lambda_2}{2} + \frac{\beta\lambda_2}{\gamma} & \theta - \frac{\lambda_1}{2} \\ -\theta + \frac{\lambda_2}{2} + \frac{\beta\lambda_2}{\gamma} & \theta^2 - \lambda_2 - \frac{\beta\lambda_2}{\gamma} & \lambda_1 - \theta^2 \\ \theta - \frac{\lambda_1}{2} & \lambda_1 - \theta^2 & \theta^2 - \lambda_1 - \gamma\lambda_1\mu \end{bmatrix}$$

 $\diamond~$ Introduce dual variables $\tau,~\lambda_1$ and λ_2

 $\begin{array}{ll} \underset{G}{\text{maximize}} & \operatorname{Tr}(A_o G) \\ \text{subject to} & \operatorname{Tr}(A_1 G) \geq 0 & : \lambda_1 \\ & \operatorname{Tr}(A_2 G) \geq 0 & : \lambda_2 \\ & \operatorname{Tr}(A_s G) = 1 & : \tau \\ & G \succeq 0 \end{array}$

◊ Dual problem becomes

$$\begin{array}{ll} \underset{\tau,\lambda_1,\lambda_2}{\text{minimize}} & \tau \\ \text{subject to} & \lambda_i \geq 0 \\ S = A_o + \sum_{i=1}^2 \lambda_i A_i - \tau A_s \preceq 0 \end{array}$$

◊ In this example:

$$S = \begin{bmatrix} -\tau - \frac{\beta\lambda_2}{\gamma} + 1 & -\theta + \frac{\lambda_2}{2} + \frac{\beta\lambda_2}{\gamma} & \theta - \frac{\lambda_1}{2} \\ -\theta + \frac{\lambda_2}{2} + \frac{\beta\lambda_2}{\gamma} & \theta^2 - \lambda_2 - \frac{\beta\lambda_2}{\gamma} & \lambda_1 - \theta^2 \\ \theta - \frac{\lambda_1}{2} & \lambda_1 - \theta^2 & \theta^2 - \lambda_1 - \gamma\lambda_1\mu \end{bmatrix}$$

♦ Strong duality holds (existence of a Slater point): $rank(G) + rank(S) \le 3$.

A few more examples

Warning for the next few slides:

A few more examples

Warning for the next few slides:

◊ expressions are horrible,

A few more examples

Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
- ◊ computer-generated (Mathematica),

Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
- ◊ computer-generated (Mathematica),
- ◊ verifiable by hand (long algebraic proofs).

Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
- computer-generated (Mathematica),
- ◊ verifiable by hand (long algebraic proofs).

Intuitions can be developed, but this is another story $\ensuremath{\textcircled{}}$

Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
- ◊ computer-generated (Mathematica),
- ◊ verifiable by hand (long algebraic proofs).

Intuitions can be developed, but this is another story $\ensuremath{\textcircled{}}$

Note I: the methodology offers 3 ways to proceed:

- ◊ play with primal formulation,
- \diamond play with primal-dual saddle-point formulation,
- ◊ play with dual formulation.

Warning for the next few slides:

- ◊ expressions are horrible,
- ◊ barely obtainable by hand,
- ◊ computer-generated (Mathematica),
- ◊ verifiable by hand (long algebraic proofs).

Intuitions can be developed, but this is another story $\ensuremath{\textcircled{}}$

Note I: the methodology offers 3 ways to proceed:

- ◊ play with primal formulation,
- ◊ play with primal-dual saddle-point formulation,
- ◊ play with dual formulation.

Note II: that any dual feasible point can be translated into a "traditional" proof.

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \left\{ \begin{array}{cc} |\mathbf{1} - \theta \frac{\beta}{\beta + \mathbf{1}}| & \quad \text{if } \mu\beta - \mu + \beta < \mathbf{0}, \text{ and } \theta \leq 2 \frac{(\beta + \mathbf{1})(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \end{array} \right.$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \begin{cases} |\mathbf{1} - \theta \frac{\beta}{\beta + \mathbf{1}}| & \text{if } \mu\beta - \mu + \beta < \mathbf{0}, \text{ and } \theta \le 2\frac{(\beta + \mathbf{1})(\mu - \beta - \mu\beta^2)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |\mathbf{1} - \theta \frac{\mathbf{1} + \mu\beta}{(\mu + \mathbf{1})(\beta + \mathbf{1})}| & \text{if } \mu\beta - \mu - \beta > \mathbf{0}, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu\beta^2 + \mu + \beta - 2\mu^2\beta^2}, \end{cases}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - 22\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu + \beta + \mu\beta}{\mu^2 + \beta^2 + \mu\beta + \mu\beta - \mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \end{cases}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \left\{ \begin{array}{ll} |1 - \theta \frac{\beta}{\beta+1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2 \frac{(\beta+1)(\mu-\beta-\mu\beta)}{\mu+\mu\beta-\beta-\beta-2-2\mu\beta^2}, \\ |1 - \theta \frac{1+\mu\beta}{(\mu+1)(\beta+1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2 \frac{\mu^2+\beta^2+\mu\beta}{\mu^2+\beta^2+\mu^2\beta+\mu\beta^2+\mu+\beta-2\mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2 \frac{\mu\beta+\mu+\beta}{2\mu\beta+\mu+\beta}, \\ |1 - \theta \frac{\mu}{\mu+1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2 \frac{(\mu+1)(\beta-\mu-\mu\beta)}{\beta+\mu\beta-\mu-\mu^2-2\mu^2\beta}, \end{array} \right.$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \left\{ \begin{array}{ll} |1-\theta\frac{\beta}{\beta+1}| & \text{if } \mu\beta-\mu+\beta<0, \text{ and } \theta \leq 2\frac{(\beta+1)(\mu-\beta-\mu\beta)}{\mu+\mu\beta-\beta-\beta^2-2\mu\beta^2}, \\ |1-\theta\frac{1+\mu\beta}{(\mu+1)(\beta+1)}| & \text{if } \mu\beta-\mu-\beta>0, \text{ and } \theta \leq 2\frac{\mu^2+\beta^2+\mu\beta+\mu+\beta-\mu^2\beta^2}{\mu^2+\beta^2+\mu^2\beta+\mu\beta^2+\mu+\beta-2\mu^2\beta^2}, \\ |1-\theta| & \text{if } \theta \geq 2\frac{\mu\beta+\mu+\beta}{2\mu\beta+\mu+\beta}, \\ |1-\theta\frac{\mu}{\mu+1}| & \text{if } \mu\beta+\mu-\beta<0, \text{ and } \theta \leq 2\frac{(\mu+1)(\beta-\mu-\mu\beta)}{\beta+\mu\beta-\mu-\mu^2-2\mu^2\beta}, \\ X & \text{otherwise,} \end{array} \right.$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu\beta + \mu\beta + \mu\beta - 2\mu^2\beta^2}, \\ |1 - \theta | & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \\ |1 - \theta \frac{\mu}{\mu + 1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2\frac{(\mu + 1)(\beta - \mu - \mu\beta)}{\beta + \mu\beta - \mu - \mu^2 - 2\mu^2\beta}, \\ \chi & \text{otherwise,} \end{cases}$$

with

$$X = \frac{\sqrt{2-\theta}}{2} \sqrt{\frac{((2-\theta)\mu(\beta+1)-\theta\beta(\mu-1))((2-\theta)\beta(\mu+1)-\theta\mu(\beta-1))}{(2-\theta)\mu\beta(\mu+1)(\beta+1)-\theta\mu^2\beta^2}}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu^2\beta + \mu\beta^2 + \mu + \beta - 2\mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \\ |1 - \theta \frac{\mu}{\mu + 1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2\frac{(\mu + 1)(\beta - \mu - \mu\beta)}{\beta + \mu\beta - \mu - \mu^2 - 2\mu^2\beta}, \\ \chi & \text{otherwise,} \end{cases}$$

with

$$X = \frac{\sqrt{2-\theta}}{2} \sqrt{\frac{((2-\theta)\mu(\beta+1)-\theta\beta(\mu-1))((2-\theta)\beta(\mu+1)-\theta\mu(\beta-1))}{(2-\theta)\mu\beta(\mu+1)(\beta+1)-\theta\mu^2\beta^2}}$$

♦ The first four cases are achieved on 1-dimensional examples (primal is simpler).

Assumptions: A μ -strongly monotone, B β -cocoercive.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu^2\beta + \mu\beta^2 + \mu\beta - \mu^2\beta^2}, \\ |1 - \theta | & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \\ |1 - \theta \frac{\mu}{\mu + 1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2\frac{(\mu + 1)(\beta - \mu - \mu\beta)}{\beta + \mu\beta - \mu - \mu^2 - 2\mu^2\beta}, \\ \chi & \text{otherwise,} \end{cases}$$

with

$$X = \frac{\sqrt{2-\theta}}{2} \sqrt{\frac{((2-\theta)\mu(\beta+1)-\theta\beta(\mu-1))((2-\theta)\beta(\mu+1)-\theta\mu(\beta-1))}{(2-\theta)\mu\beta(\mu+1)(\beta+1)-\theta\mu^2\beta^2}}$$

♦ The first four cases are achieved on 1-dimensional examples (primal is simpler).

◊ Fifth case is achieved on 2-dimensional example (dual is simpler).

Assumptions: A μ -strongly monotone, B β -cocoercive.

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

♦ Case 1: (1-dimensional)
$$A = N_{\{0\}}$$
 (i.e., $J_{\lambda A} = 0$), $B = \frac{1}{\beta}I$ for $\rho = |1 - \theta \frac{\beta}{\beta + 1}|$.

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

♦ Case 1: (1-dimensional)
$$A = N_{\{0\}}$$
 (i.e., $J_{\lambda A} = 0$), $B = \frac{1}{\beta}I$ for $\rho = |1 - \theta \frac{\beta}{\beta+1}|$.

 $\diamond \text{ Case 2: (1-dimensional) } A = \mu I, B = \frac{1}{\beta}I \text{ for } \rho = |1 - \theta \frac{1 + \mu \beta}{(\mu + 1)(\beta + 1)}|.$

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

- ♦ Case 1: (1-dimensional) $A = N_{\{0\}}$ (i.e., $J_{\lambda A} = 0$), $B = \frac{1}{\beta}I$ for $\rho = |1 \theta \frac{\beta}{\beta + 1}|$.
- ♦ Case 2: (1-dimensional) $A = \mu I$, $B = \frac{1}{\beta}I$ for $\rho = |1 \theta \frac{1 + \mu \beta}{(\mu + 1)(\beta + 1)}|$.
- ♦ Case 3: (1-dimensional) $A = N_{\{0\}}$, B = 0 for $\rho = |1 \theta|$.

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

♦ Case 1: (1-dimensional) $A = N_{\{0\}}$ (i.e., $J_{\lambda A} = 0$), $B = \frac{1}{\beta}I$ for $\rho = |1 - \theta \frac{\beta}{\beta + 1}|$.

 $\diamond \text{ Case 2: (1-dimensional) } A = \mu I, B = \frac{1}{\beta} I \text{ for } \rho = |1 - \theta \frac{1 + \mu \beta}{(\mu + 1)(\beta + 1)}|.$

- ♦ Case 3: (1-dimensional) $A = N_{\{0\}}$, B = 0 for $\rho = |1 \theta|$.
- \diamond Case 4: (1-dimensional) $A = \mu I$, B = 0 for $\rho = |1 \theta \frac{\mu}{\mu+1}|$.

Assumptions: A μ -strongly monotone, B β -cocoercive.

Examples on which those bounds are attained?

 $\diamond \quad \text{Case 1: (1-dimensional) } A = N_{\{0\}} \text{ (i.e., } J_{\lambda A} = 0\text{), } B = \frac{1}{\beta}I \text{ for } \rho = |1 - \theta \frac{\beta}{\beta + 1}|.$

♦ Case 2: (1-dimensional)
$$A = \mu I$$
, $B = \frac{1}{\beta} I$ for $\rho = |1 - \theta \frac{1 + \mu \beta}{(\mu + 1)(\beta + 1)}|$.

- ♦ Case 3: (1-dimensional) $A = N_{\{0\}}$, B = 0 for $\rho = |1 \theta|$.
- \diamond Case 4: (1-dimensional) $A = \mu I$, B = 0 for $\rho = |1 \theta \frac{\mu}{\mu+1}|$.
- \diamond Case 5: (2-dimensional) for appropriate (complicated) values of a and K:

$$A = \begin{pmatrix} \mu & -a \\ a & \mu \end{pmatrix}, \qquad B = \begin{pmatrix} \beta K & -\sqrt{K - K^2 \beta^2} \\ \sqrt{K - K^2 \beta^2} & \beta K \end{pmatrix},$$

for
$$\rho = \frac{\sqrt{2-\theta}}{2} \sqrt{\frac{((2-\theta)\mu(\beta+1)-\theta\beta(\mu-1))((2-\theta)\beta(\mu+1)-\theta\mu(\beta-1))}{(2-\theta)\mu\beta(\mu+1)(\beta+1)-\theta\mu^2\beta^2}}$$

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu + 1))^2}{l^2 + 1}}}{2(\mu + 1)} & \text{if } (s), \\ \\ |1 - \theta \frac{l + \mu}{(\mu + 1)(l + 1)}| & \text{if } (b), \\ \sqrt{\frac{(2 - \theta)}{4\mu(l^2 + 1)} \frac{\left(\theta(l^2 + 1) - 2\mu(\theta + l^2 - 1)\right)\left(\theta\left(1 + 2\mu + l^2\right) - 2(\mu + 1)\left(l^2 + 1\right)\right)}{2\mu(\theta + l^2 - 1) - (2 - \theta)(1 - l^2)}} & \text{otherwise,} \end{cases}$$

with

(a)
$$\mu \frac{-(2(\theta-1)\mu+\theta-2)+L^2(\theta-2(1+\mu))}{\sqrt{(2(\theta-1)\mu+\theta-2)^2+L^2(\theta-2(\mu+1))^2}} \leq \sqrt{L^2+1},$$

(b) $L < 1, \ \mu > \frac{L^2+1}{(L-1)^2}, \ \text{and} \ \theta \leq \frac{2(\mu+1)(L+1)(\mu+\mu L^2-L^2-2\mu L-1)}{2\mu^2-\mu+\mu L^3-L^3-3\mu L^2-L^2-2\mu^2L-\mu L-L-1}$

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu + 1))^2}{l^2 + 1}}}{2(\mu + 1)} & \text{if } (\vartheta), \\ \\ |1 - \theta \frac{l + \mu}{(\mu + 1)(l + 1)}| & \text{if } (b), \\ \sqrt{\frac{(2 - \theta)}{4\mu(l^2 + 1)} \frac{\left(\theta(l^2 + 1) - 2\mu(\theta + l^2 - 1)\right)\left(\theta\left(1 + 2\mu + l^2\right) - 2(\mu + 1)\left(l^2 + 1\right)\right)}{2\mu(\theta + l^2 - 1) - (2 - \theta)(1 - l^2)}} & \text{otherwise,} \end{cases}$$

with

(a)
$$\mu \frac{-(2(\theta-1)\mu+\theta-2)+L^2(\theta-2(1+\mu))}{\sqrt{(2(\theta-1)\mu+\theta-2)^2+L^2(\theta-2(\mu+1))^2}} \leq \sqrt{L^2+1},$$

(b) $L < 1, \ \mu > \frac{L^2+1}{(L-1)^2}, \ \text{and} \ \theta \leq \frac{2(\mu+1)(L+1)(\mu+\mu L^2-L^2-2\mu L-1)}{2\mu^2-\mu+\mu L^3-L^3-3\mu L^2-L^2-2\mu^2L-\mu L-L-1}.$

◇ First and third cases are achieved on 2-dimensional examples (dual is simpler),

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu + 1))^2}{l^2 + 1}}}{2(\mu + 1)} & \text{if } (\vartheta), \\ \\ |1 - \theta \frac{l + \mu}{(\mu + 1)(l + 1)}| & \text{if } (b), \\ \sqrt{\frac{(2 - \theta)}{4\mu(l^2 + 1)} \frac{\left(\theta(l^2 + 1) - 2\mu(\theta + l^2 - 1)\right)\left(\theta\left(1 + 2\mu + l^2\right) - 2(\mu + 1)\left(l^2 + 1\right)\right)}{2\mu(\theta + l^2 - 1) - (2 - \theta)(1 - l^2)}} & \text{otherwise,} \end{cases}$$

with

(a)
$$\mu \frac{-(2(\theta-1)\mu+\theta-2)+L^2(\theta-2(1+\mu))}{\sqrt{(2(\theta-1)\mu+\theta-2)^2+L^2(\theta-2(\mu+1))^2}} \leq \sqrt{L^2+1},$$

(b) $L < 1, \ \mu > \frac{L^2+1}{(L-1)^2}, \ \text{and} \ \theta \leq \frac{2(\mu+1)(L+1)(\mu+\mu L^2-L^2-2\mu L-1)}{2\mu^2-\mu+\mu L^3-L^3-3\mu L^2-L^2-2\mu^2 L-\mu L-L-1}.$

- ◇ First and third cases are achieved on 2-dimensional examples (dual is simpler),
- ♦ Second case is achieved on 1-dimensional example (primal is simpler).

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

◊ Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

$$A = \mu I + N_{\{0\} \times \mathbb{R}}, \quad B = L \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

for
$$\rho = \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu + 1))^2}{l^2 + 1}}}{2(\mu + 1)}$$

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

♦ Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

$$A = \mu I + N_{\{0\} \times \mathbb{R}}, \quad B = L \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

for
$$\rho = \frac{\theta + \sqrt{\frac{(2(\theta-1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu+1))^2}{l^2 + 1}}}{2(\mu+1)}$$

♦ Case 2: (1-dimensional) $A = \mu I$, B = LI for $\rho = |1 - \theta \frac{L+\mu}{(\mu+1)(L+1)}|$

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

◊ Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

$$A = \mu I + N_{\{0\} \times \mathbb{R}}, \quad B = L \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

for
$$\rho = \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + L^2(\theta - 2(\mu + 1))^2}{L^2 + 1}}}{2(\mu + 1)}$$

♦ Case 2: (1-dimensional) $A = \mu I$, B = LI for $\rho = |1 - \theta \frac{L+\mu}{(\mu+1)(L+1)}|$

 $\diamond~$ Case 3: (2-dimensional) For appropriately chosen (complicated) K:

$$A = \mu I + N_{\mathbb{R} \times \{0\}}, \quad B = L \begin{pmatrix} K & -\sqrt{1 - K^2} \\ \sqrt{1 - K^2} & K \end{pmatrix},$$

for
$$\rho = \sqrt{\frac{(2-\theta)}{4\mu(L^2+1)}} \frac{\left(\theta(L^2+1)-2\mu(\theta+L^2-1)\right)\left(\theta(1+2\mu+L^2)-2(\mu+1)\left(L^2+1\right)\right)}{2\mu(\theta+L^2-1)-(2-\theta)(1-L^2)}$$

Avoiding semidefinite programming modeling steps?

Avoiding semidefinite programming modeling steps?

François Glineur (UCLouvain)

Julien Hendrickx (UCLouvain)

"Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order optimization methods" (CDC 2017)

PESTO example: contraction factors for DRS

```
% (0) Initialize an empty PEP
 P=pep():
 N = 1:
% (1) Set up the class of monotone inclusions
paramA.L = 1; paramA.mu = 0; % A is 1-Lipschitz and 0-strongly monotone
 paramB.mu = .1;
                              % B is .1-strongly monotone
 A = P.DeclareFunction('LipschitzStronglyMonotone',paramA);
 B = P.DeclareFunction('StronglyMonotone', paramB);
w = cell(N+1,1); wp = cell(N+1.1):
x = cell(N, 1); xp = cell(N, 1);
v = cell(N, 1); v_D = cell(N, 1);
% (2) Set up the starting points
w{1} = P.StartingPoint(): wp{1} = P.StartingPoint():
 P.InitialCondition((will-wpill)^2<=1):
% (3) Algorithm
lambda = 1.3: % step size (in the resolvents)
 theta = .9: % overrelaxation
If n k = 1 : N
     x{k} = proximal step(w{k}.B.lambda):
     y{k} = proximal step(2*x{k}-w{k},A,lambda);
     w\{k+1\} = w\{k\} \cdot theta*(x\{k\} \cdot v\{k\}):
     xp{k} = proximal step(wp{k}.B.lambda);
     yp{k} = proximal step(2*xp{k}-wp{k},A,lambda);
     wp\{k+1\} = wp\{k\} \cdot theta*(xp\{k\} \cdot vp\{k\});
- end
% (4) Set up the performance measure: ||z0-z1||^2
 P.PerformanceMetric((w{k+1}-wp{k+1})^2):
 % (5) Solve the PEP
 P.solve()
 % (6) Evaluate the output
 double((w{k+1}-wp{k+1})^2) % worst-case contraction factor
```
PESTO example: contraction factors for DRS

```
% (O) Initialize an empty PEP
P=pep():
N = 1:
% (1) Set up the class of monotone inclusions
paramA.L = 1; paramA.mu = 0; % A is 1-Lipschitz and 0-strongly monotone
paramB.mu = .1;
                             % B is .1-strongly monotone
A = P.DeclareFunction('LipschitzStronglyMonotone',paramA);
B = P.DeclareFunction('StronglyMonotone', paramB);
w = cell(N+1,1); wp = cell(N+1.1):
x = cell(N, 1); xp = cell(N, 1);
v = cell(N, 1); v_D = cell(N, 1);
% (2) Set up the starting points
w{1} = P.StartingPoint(): wp{1} = P.StartingPoint():
P.InitialCondition((will-wpill)^2<=1):
% (3) Algorithm
lambda = 1.3: % step size (in the resolvents)
theta = .9; % overrelaxation
            = proximal step(w{k},B,lambda);
 x{k}
            = proximal step(2*x{k}-w{k},A,lambda);
 v{k]
 w{k+1}
           = w{k}-theta*(x{k}-y{k});
    xp{k}
            = proximal step(wp{k}.B.Lambda);
           = proximal step(2*xp{k}-wp{k},A,lambda);
    vp{k}
    wp\{k+1\} = wp\{k\} \cdot theta*(xp\{k\} \cdot vp\{k\});
- end
% (4) Set up the performance measure: ||z0-z1||^2
P.PerformanceMetric((w{k+1}-wp{k+1})^2):
% (5) Solve the PEP
P.solve()
% (6) Evaluate the output
double((w{k+1}-wp{k+1})^2) % worst-case contraction factor
```

PESTO example: contraction factors for DRS

```
% (O) Initialize an empty PEP
 P=pep():
 N = 1:
% (1) Set up the class of monotone inclusions
paramA.L = 1; paramA.mu = 0; % A is 1-Lipschitz and 0-strongly monotong
                                                                  00
 paramB.mu = .1;
                               % B is .1-strongly monotone
                                                                   Contraction factor
                                                                      0.8
 A = P.DeclareFunction('LipschitzStronglyMonotone',paramA);
 B = P.DeclareFunction('StronglyMonotone', paramB);
                                                                      0.6
 w = cell(N+1.1):
                    wp = cell(N+1,1);
 x = cell(N, 1);
                    xp = cell(N, 1);
                                                                      0.4
 v = cell(N, 1):
                    vp = cell(N, 1):
                                                                      0.2
% (2) Set up the starting points
 w{1} = P.StartingPoint(): wp{1} = P.StartingPoint():
                                                                        0
 P.InitialCondition((w{1}-wp{1})^2<=1);</pre>
                                                                                0.5
                                                                                        1
% (3) Algorithm
lambda = 1.3:
                    % step size (in the resolvents)
 theta = .9:
                     % overrelaxation
 x{k}
            = proximal step(w{k},B,lambda);
            = proximal step(2*x{k}-w{k},A,lambda);
 v{k}
 w{k+1}
            = w{k}-theta*(x{k}-v{k});
             = proximal step(wp{k}.B.lambda):
     xp{k}
     vp{k}
             = proximal step(2*xp{k}-wp{k},A,lambda);
     wp\{k+1\} = wp\{k\} \cdot theta*(xp\{k\} \cdot vp\{k\});
- end
% (4) Set up the performance measure: ||z0-z1||^2
 P.PerformanceMetric((w{k+1}-wp{k+1})^2):
 % (5) Solve the PEP
 P.solve()
 % (6) Evaluate the output
 double((w{k+1}-wp{k+1})^2) % worst-case contraction factor
```


PESTO example: contraction factors for DRS

```
% (0) Initialize an empty PEP
P=pep():
N = 1:
% (1) Set up the class of monotone inclusions
paramA.L = 1; paramA.mu = 0; % A is 1-Lipschitz and 0-strongly monotong
                                                               03
paramB.mu = .1;
                              % B is .1-strongly monotone
                                                                                                              \mu = 0.1
                                                                Contraction factor
                                                                   0.8
A = P.DeclareFunction('LipschitzStronglyMonotone',paramA);
                                                                                                              \mu = 0.5
B = P.DeclareFunction('StronglyMonotone', paramB);
                                                                   0.6
                                                                                                              \mu = 1
w = cell(N+1.1):
                   wp = cell(N+1,1):
                                                                                                              \mu = 1.5
x = cell(N, 1);
                    xp = cell(N, 1);
                                                                   0.4
v = cell(N, 1):
                   vp = cell(N, 1):
                                                                                                              \mu = 2
                                                                   0.2
% (2) Set up the starting points
w{1} = P.StartingPoint(): wp{1} = P.StartingPoint():
P.InitialCondition((w{1}-wp{1})^2<=1);</pre>
                                                                             0.5
                                                                                     1
                                                                                           1.5
                                                                           Lipschitz constant L
% (3) Algorithm
lambda = 1.3:
                   % step size (in the resolvents)
theta = .9:
                    % overrelaxation
            = proximal step(w{k},B,lambda);
 x{k
            = proximal step(2*x{k}-w{k},A,lambda);
 v{k}
 w{k+1}
            = w{k}-theta*(x{k}-v{k});
    xp{k}
            = proximal step(wp{k}.B.Lambda);
    vp{k}
            = proximal step(2*xp{k}-wp{k},A,lambda);
            = wp{k}.theta*(xp{k}.yp{k});
    wp{k+1}
- end
                                                      \checkmark fast prototyping (~ 20 effective lines)
% (4) Set up the performance measure: ||z0-z1||^2
                                                      \checkmark quick analyses (\sim 10 minutes)
P.PerformanceMetric((w{k+1}-wp{k+1})^2):

    computer-aided proofs (multipliers)

% (5) Solve the PEP
P.solve()
% (6) Evaluate the output
double((w{k+1}-wp{k+1})^2)
                            % worst-case contraction factor
                                                                                                               23
```

Includes... but not limited to

- \diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
- proximal point algorithm,
- projected and proximal gradient, accelerated/momentum versions,
- steepest descent, greedy/conjugate gradient methods,
- ◊ Douglas-Rachford/three operator splitting,
- ◊ Frank-Wolfe/conditional gradient,
- ◊ inexact gradient/fast gradient,
- ◊ Krasnoselskii-Mann and Halpern fixed-point iterations.

Includes... but not limited to

- \diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
- proximal point algorithm,
- projected and proximal gradient, accelerated/momentum versions,
- steepest descent, greedy/conjugate gradient methods,
- ◊ Douglas-Rachford/three operator splitting,
- ◊ Frank-Wolfe/conditional gradient,
- ◊ inexact gradient/fast gradient,
- ◊ Krasnoselskii-Mann and Halpern fixed-point iterations.

Upcoming (soon): SAG, SAGA, SGD and variants.

Includes... but not limited to

- \diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
- proximal point algorithm,
- projected and proximal gradient, accelerated/momentum versions,
- ◊ steepest descent, greedy/conjugate gradient methods,
- ◊ Douglas-Rachford/three operator splitting,
- ◊ Frank-Wolfe/conditional gradient,
- ◊ inexact gradient/fast gradient,
- ◊ Krasnoselskii-Mann and Halpern fixed-point iterations.

Upcoming (soon): SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by other groups). Clean updated references in user manual.

Includes... but not limited to

- $\diamond~$ subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
- proximal point algorithm,
- projected and proximal gradient, accelerated/momentum versions,
- ◊ steepest descent, greedy/conjugate gradient methods,
- ◊ Douglas-Rachford/three operator splitting,
- ◊ Frank-Wolfe/conditional gradient,
- ◊ inexact gradient/fast gradient,
- ◊ Krasnoselskii-Mann and Halpern fixed-point iterations.

Upcoming (soon): SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Lieder, Lessard, Recht, Packard, Van Scoy, etc.

Classes of functions/operators within PESTO

Functional class	Guaranteed tight PEP
Convex functions	V
Convex functions (poss. bounded subdifferentials)	\checkmark
Convex indicator functions (poss. bounded domain)	\checkmark
Convex support functions (poss. bounded subdifferentials)	\checkmark
Smooth strongly convex functions	\checkmark
Smooth (possibly nonconvex) functions	\checkmark
Smooth convex functions (poss. bounded subdifferentials)	\checkmark
Strongly convex functions (poss. bounded domain)	\checkmark
Operator class	
Monotone (maximally)	V
Strongly monotone (maximally)	\checkmark
Cocoercive	\checkmark
Lipschitz	\checkmark
Cocoercive and strongly monotone*	×
Lipschitz and strongly monotone*	×

*: for some cases (e.g., DRS/TOS's contraction factors), still tight.

Performance estimation's philosophy

Performance estimation's philosophy ♦ numerically allows obtaining tight bounds, rigorous baselines for proofs!

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

 $\diamond~$ step forward to "reproducible theory" (useful for reviewing, too $\odot)$

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

 $\diamond~$ step forward to "reproducible theory" (useful for reviewing, too $\odot)$

Interested? Presentation mainly based on:

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

 $\diamond~$ step forward to "reproducible theory" (useful for reviewing, too $\odot)$

Interested? Presentation mainly based on:

 Ryu, T., Bergeling, Giselsson."Operator splitting performance estimation: Tight contraction factors and optimal parameter selection" (2018, arXiv:1812.00146)

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

◊ step forward to "reproducible theory" (useful for reviewing, too ☺)

Interested? Presentation mainly based on:

 Ryu, T., Bergeling, Giselsson."Operator splitting performance estimation: Tight contraction factors and optimal parameter selection" (2018, arXiv:1812.00146) [In the paper: presentation for three-operator splitting and parameter selection]

Performance estimation's philosophy

- numerically allows obtaining tight bounds, rigorous baselines for proofs!
- helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

◊ step forward to "reproducible theory" (useful for reviewing, too ☺)

Interested? Presentation mainly based on:

- Ryu, T., Bergeling, Giselsson."Operator splitting performance estimation: Tight contraction factors and optimal parameter selection" (2018, arXiv:1812.00146) [In the paper: presentation for three-operator splitting and parameter selection]
- T., Hendrickx, Glineur. "Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order optimization methods" (CDC 2017) [In the paper: presentation of the toolbox for first-order optimization methods]

Thanks! Questions?

www.di.ens.fr/ \sim ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github