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What is this presentation about?

Computer-assisted analyses for optimization & monotone inclusions
(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019),

and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)
(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson

2017), (Moursi & Vandenberghe 2018), and many others.

2



What is this presentation about?

Computer-assisted analyses for optimization & monotone inclusions

(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019),

and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)
(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson

2017), (Moursi & Vandenberghe 2018), and many others.

2



What is this presentation about?

Computer-assisted analyses for optimization & monotone inclusions
(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019),

and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)
(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson

2017), (Moursi & Vandenberghe 2018), and many others.

2



What is this presentation about?

Computer-assisted analyses for optimization & monotone inclusions
(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019),

and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)

(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson

2017), (Moursi & Vandenberghe 2018), and many others.

2



What is this presentation about?

Computer-assisted analyses for optimization & monotone inclusions
(Drori & Teboulle 2014), (Kim & Fessler 2016), (Lessard, Recht & Packard 2016),

(T, Hendrickx & Glineur 2017), (Lieder 2018), (Kim 2019), (Tan, Varvitsiotis & Tan 2019),

and few others.

Worst-case analyses for operator splitting (here: Douglas-Rachford)
(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson

2017), (Moursi & Vandenberghe 2018), and many others.

2



Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in optimization and
monotone inclusions!
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Douglas-Rachford Splitting
Let f and h be two convex, closed, proper functions. (Overrelaxed) DRS for solving

min
x∈Rd

f (x) + h(x),

consists in iterating:

xk+1 = argminx∈Rd {γh(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {γf (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1).

Let A, and B be maximally monotone operators; and let JγA := (I + γA)−1 and
JγB := (I + γB)−1 be the respective resolvents.

Monotone inclusion problem:

find
x∈Rd

0 ∈ A(x) + B(x),

(overrelaxed) Douglas-Rachford for solving the monotone inclusion

wk+1 = (I − θJγB + θJγA(2JγB − I ))wk .

Recover optimization setting with A = ∂f and B = ∂h.
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Contraction factor?

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

� Optimization problem to find sharp contraction factor:

maximize
A,B,w0,w

′
0,w1,w

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to w1 generated by DR from w0,

w ′1 generated by DR from w ′0,

assumptions on A and B.

which has operators A and B as variables.
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Assumptions

Nontrivial rates by assuming something more on A and/or B.

Pick assumptions among the following:

� A convex function f is commonly assumed to be (for all x , y ∈ Rd ):

� µ-strongly convex f (x) ≥ f (y) + 〈∂f (y), x − y〉+ µ
2 ‖x − y‖2,

� L-smooth f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

� A max. monotone operators B is commonly assumed to be (for all x , y ∈ Rd ):

� µ-strongly monotone 〈B(x)− B(y), x − y〉 ≥ µ‖x − y‖2,

� β-cocoercive 〈B(x)− B(y), x − y〉 ≥ β‖B(x)− B(y)‖2,

� L-Lipschitz ‖B(x)− B(y)‖ ≤ L‖x − y‖.
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DR contraction factors

Table: Contraction factors for DR: assumptions beyond max. monotonicity.

# Properties for A Properties for B Reference Sharp Notes

O1 ∂f , f : str. cvx & smooth ∂g [1,2] 4

O2 ∂f , f : str. cvx ∂g , g : smooth [3] 6 1.

M1 str. mono. & cocoercive - [3] 4

M2 str. mono. & Lipschitz - [3] 4 2.

M3 str. mono. cocoercive [3] 6

M4 str. mono. Lipschitz [4] 6 3.

1. sharp rates for some parameter choices in [3]
2. Lions and Mercier [5] provided conservative rate in this setting
3. sharp rate when B is skew linear in [4]

[1] Giselsson, Boyd, Diagonal Scaling in DRS and ADMM, 2014.
[2] Giselsson, Boyd, Linear Convergence and Metric Selection in DRS and ADMM, 2017.
[3] Giselsson, Tight Global Linear Convergence Rate Bounds for DRS, 2017.
[4] Moursi, Vandenberghe. DRS for a Lipschitz continuous and a strongly monotone operator, 2018.
[5] Lions, Mercier. Splitting Algorithms for the Sum of Two Nonlinear Operators, 1979.
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Contraction factor

Question: When is the DRS iteration a contraction? What is the smallest ρ such that∥∥w1 − w ′1
∥∥ ≤ ρ∥∥w0 − w ′0

∥∥,
for all w0,w ′0 ∈ Rd and w1, w ′1 generated with DRS from respectively w0 and w ′0?

� Optimization problem to find sharp contraction factor:

maximize
A,B,w0,w

′
0,w1,w

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to w1 generated by DR from w0,

w ′1 generated by DR from w ′0,

A is µ-strongly monotone and B is β-cocoercive.

which has operators A and B as variables.

� Optimal value can be found via convex optimization! (3x3 SDP)
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Problem reformulation

� Recall DR splitting:

x1 = JγB(w0) with JγB := (I + γB)−1,

y1 = JγA(2x1 − w0) with JγA := (I + γA)−1,

w1 = w0 + θ(y1 − x1).

� Require w1 and w ′1 to be generated by DR:

maximize
A,B,w0,w

′
0,w1,w

′
1

x1,x
′
1,y1,y

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to

x1 = JγB(w0),

x ′1 = JγB(w
′
0),

y1 = JγA(2x1 − w0),

y ′1 = JγA(2x ′1 − w ′0),

w1 = w0 + θ(y1 − x1),

w ′1 = w ′0 + θ(y ′1 − x ′1),

A is µ-strongly monotone and B is β-cocoercive.

� Infinite-dimensional problem: two operators as variables!
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Discrete version

� Remove A and B from the variables?

maximize
w0,w

′
0,w1,w

′
1

x1,x
′
1,y1,y

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to

∃B β-cocoercive such that
{

x1 = JγB(w0),
x ′1 = JγB(w

′
0),

∃A µ-strongly monotone such that
{

y1 = JγA(2x1 − w0),
y ′1 = JγA(2x ′1 − w ′0),

w1 = w0 + θ(y1 − x1),

w ′1 = w ′0 + θ(y ′1 − x ′1).

� How to remove existence constraints?
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Interpolation of operators

� Define the duplets (x , x+) and (y , y+). Then

〈x − y , x+ − y+〉 ≥ (γµ+ 1)‖x+ − y+‖2

iff there exists a µ-strongly monotone operator A such that
− x+ = JγA(x)
− y+ = JγA(y)

� Define the duplets (x , x+) and (y , y+). Then

〈x − y , x+ − y+〉 ≥ β
γ
‖x − x+ − (y − y+)‖2 + ‖x+ − y+‖2

iff there exists a β-cocoercive operator B such that
− x+ = JγB(x)
− y+ = JγB(y)
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Replace constraints

� Interpolation conditions allows to remove red constraints

maximize
w0,w

′
0,w1,w

′
1

x1,x
′
1,y1,y

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to ∃B β-cocoercive such that
{

x1 = JγB(w0),
x ′1 = JγB(w

′
0),

∃A µ-strongly monotone such that
{

y1 = JγA(2x1 − w0),
y ′1 = JγA(2x ′1 − w ′0),

w1 = w0 + θ(y1 − x1),

w ′1 = w ′0 + θ(y ′1 − x ′1).

� replacing them by:〈
y1 − y ′1, 2(x1 − x ′1)− (w0 − w ′0)

〉
≥ (γµ+ 1)

∥∥y1 − y ′1
∥∥2
,

and 〈
w0 − w ′0, x1 − x ′1

〉
≥ β

γ

∥∥w0 − w ′0 − (x1 − x ′1)
∥∥2

+
∥∥x1 − x ′1

∥∥2
.

� Note: optimal value is the same! No relaxation.
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Reformulations (cont’d)

� Equivalent problem without operator class constraints:

maximize
w0,w

′
0,w1,w

′
1

x1,x
′
1,y1,y

′
1

‖w1 − w ′1‖
‖w0 − w ′0‖

subject to
〈
y1 − y ′1, 2(x1 − x ′1)− (w0 − w ′0)

〉
≥ (γµ+ 1)

∥∥y1 − y ′1
∥∥2
,〈

w0 − w ′0, x1 − x ′1
〉
≥ β

γ

∥∥w0 − w ′0 − (x1 − x ′1)
∥∥2

+
∥∥x1 − x ′1

∥∥2
,

w1 = wk + θ(y1 − x1),

w ′1 = wk + θ(y ′1 − x ′1).

� Yet another reformulation

maximize
w0,w

′
0

x1,x
′
1,y1,y

′
1

‖w0 + θ(y1 − x1)− w0 − θ(y ′1 − x ′1)‖2

‖w0 − w ′0‖2

subject to
〈
y1 − y ′1, 2(x1 − x ′1)− (w0 − w ′0)

〉
≥ (γµ+ 1)

∥∥y1 − y ′1
∥∥2
,〈

w0 − w ′0, x1 − x ′1
〉
≥ β

γ

∥∥w0 − w ′0 − (x1 − x ′1)
∥∥2

+
∥∥x1 − x ′1

∥∥2
.
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Semidefinite lifting

� All parts of optimization problem are quadratic:

maximize
w0,w

′
0

x1,x
′
1,y1,y

′
1

‖w0 + θ(y1 − x1)− w0 − θ(y ′1 − x ′1)‖2

‖w0 − w ′0‖2

subject to
〈
y1 − y ′1, 2(x1 − x ′1)− (w0 − w ′0)

〉
≥ (γµ+ 1)

∥∥y1 − y ′1
∥∥2
,〈

w0 − w ′0, x1 − x ′1
〉
≥ β

γ

∥∥w0 − w ′0 − (x1 − x ′1)
∥∥2

+
∥∥x1 − x ′1

∥∥2
.

� They can therefore be represented with a Gram matrix. Let

G =

 ‖w0 − w ′0‖2 〈w0 − w ′0, x1 − x ′1〉 〈w0 − w ′0, y1 − y ′1〉
〈x1 − x ′1,w0 − w ′0〉 ‖x1 − x ′1‖2 〈x1 − x ′1, y1 − y ′1〉
〈y1 − y ′1,w0 − w ′0〉 〈y1 − y ′1, x1 − x ′1〉 ‖y1 − y ′1‖2


where G � 0 by construction

, and reformulate to:

maximize
G

Tr(AoG)

Tr(AsG)

subject to Tr(A1G) ≥ 0

Tr(A2G) ≥ 0

G � 0.

with appropriate Ao ,As ,A1,A2 for picking correct elements in G

� Note: assuming w0,w ′0, x1, x
′
1, y1, y

′
1 ∈ Rd with d ≥ 3, same optimal cost!
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1

‖w0 + θ(y1 − x1)− w0 − θ(y ′1 − x ′1)‖2

‖w0 − w ′0‖2

subject to
〈
y1 − y ′1, 2(x1 − x ′1)− (w0 − w ′0)

〉
≥ (γµ+ 1)

∥∥y1 − y ′1
∥∥2
,〈

w0 − w ′0, x1 − x ′1
〉
≥ β

γ

∥∥w0 − w ′0 − (x1 − x ′1)
∥∥2

+
∥∥x1 − x ′1

∥∥2
.

� They can therefore be represented with a Gram matrix. Let
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Last part in convexification

� The constraints are positively homogeneous of deg. 1 and the cost is constant
under scaling of G

maximize
G

Tr(AoG)

Tr(AsG)

subject to Tr(A1G) ≥ 0

Tr(A2G) ≥ 0

G � 0.

� Therefore an equivalent convex problem is

maximize
G

Tr(AoG)

subject to Tr(A1G) ≥ 0

Tr(A2G) ≥ 0

Tr(AsG) = 1

G � 0.

which is a 3x3 semidefinite program.
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Dual problem

� Introduce dual variables τ , λ1 and λ2

maximize
G

Tr(AoG)

subject to Tr(A1G) ≥ 0 : λ1
Tr(A2G) ≥ 0 : λ2
Tr(AsG) = 1 : τ
G � 0

� Dual problem becomes

minimize
τ,λ1,λ2

τ

subject to λi ≥ 0
S = Ao +

∑2
i=1 λiAi − τAs � 0

� In this example:

S =

 −τ − βλ2
γ + 1 −θ + λ2

2 + βλ2
γ θ − λ1

2
−θ + λ2

2 + βλ2
γ θ2 − λ2 − βλ2

γ λ1 − θ2

θ − λ1
2 λ1 − θ2 θ2 − λ1 − γλ1µ


� Strong duality holds (existence of a Slater point): rank(G) + rank(S) ≤ 3.
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A few more examples

Warning for the next few slides:

� expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica),

� verifiable by hand (long algebraic proofs).

Intuitions can be developed, but this is another story ,

Note I: the methodology offers 3 ways to proceed:

� play with primal formulation,

� play with primal-dual saddle-point formulation,

� play with dual formulation.

Note II: that any dual feasible point can be translated into a “traditional” proof.
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Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β
2µβ+µ+β

,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

� The first four cases are achieved on 1-dimensional examples (primal is simpler).

� Fifth case is achieved on 2-dimensional example (dual is simpler).
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Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

Examples on which those bounds are attained?

� Case 1: (1-dimensional) A = N{0} (i.e., JλA = 0), B = 1
β
I for ρ = |1− θ β

β+1 |.

� Case 2: (1-dimensional) A = µI , B = 1
β
I for ρ = |1− θ 1+µβ

(µ+1)(β+1) |.

� Case 3: (1-dimensional) A = N{0}, B = 0 for ρ = |1− θ|.
� Case 4: (1-dimensional) A = µI , B = 0 for ρ = |1− θ µ

µ+1 |.

� Case 5: (2-dimensional) for appropriate (complicated) values of a and K :

A =

(
µ −a
a µ

)
, B =

(
βK −

√
K − K2β2√

K − K2β2 βK

)
,

for ρ =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .
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Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),

√
(2−θ)

4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

� First and third cases are achieved on 2-dimensional examples (dual is simpler),

� Second case is achieved on 1-dimensional example (primal is simpler).
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Douglas-Rachford Splitting
Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

Examples on which those bounds are attained?

� Case 1: (2-dimensional) We choose (see also Moursi & Vandenberghe 2018)

A = µ I + N{0}×R, B = L

[
0 1
−1 0

]

for ρ =
θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1)

� Case 2: (1-dimensional) A = µI , B = LI for ρ = |1− θ L+µ
(µ+1)(L+1) |

� Case 3: (2-dimensional) For appropriately chosen (complicated) K :

A = µ I + NR×{0}, B = L

(
K −

√
1− K2

√
1− K2 K

)
,

for ρ =

√
(2−θ)

4µ(L2+1)
(θ(L2+1)−2µ(θ+L2−1))(θ(1+2µ+L2)−2(µ+1)(L2+1))

2µ(θ+L2−1)−(2−θ)(1−L2) .
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Avoiding semidefinite programming modeling steps?

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods” (CDC 2017)
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PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

23



PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

23



PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

23



PESTO example: contraction factors for DRS

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lipschitz constant L

C
on

tr
ac

ti
on

fa
ct

or
ρ
2

µ = 0.1
µ = 0.5
µ = 1
µ = 1.5
µ = 2

23



Current library of examples within PESTO

Includes... but not limited to

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� proximal point algorithm,

� projected and proximal gradient, accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations.

Upcoming (soon): SAG, SAGA, SGD and variants.

PESTO contains most of the recent PEP-related advances (including techniques by
other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Lieder, Lessard, Recht,
Packard, Van Scoy, etc.
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Classes of functions/operators within PESTO

Functional class Guaranteed tight PEP
Convex functions 4

Convex functions (poss. bounded subdifferentials) 4

Convex indicator functions (poss. bounded domain) 4

Convex support functions (poss. bounded subdifferentials) 4

Smooth strongly convex functions 4

Smooth (possibly nonconvex) functions 4

Smooth convex functions (poss. bounded subdifferentials) 4

Strongly convex functions (poss. bounded domain) 4

Operator class
Monotone (maximally) 4

Strongly monotone (maximally) 4

Cocoercive 4

Lipschitz 4

Cocoercive and strongly monotone∗ 6

Lipschitz and strongly monotone∗ 6

∗: for some cases (e.g., DRS/TOS’s contraction factors), still tight.

25



Concluding remarks

Performance estimation’s philosophy

� numerically allows obtaining tight bounds,

rigorous baselines for proofs!

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

� step forward to “reproducible theory” (useful for reviewing, too ,)

Interested? Presentation mainly based on:

� Ryu, T., Bergeling, Giselsson.“Operator splitting performance estimation: Tight
contraction factors and optimal parameter selection” (2018, arXiv:1812.00146)

[In the paper: presentation for three-operator splitting and parameter selection]

� T., Hendrickx, Glineur. “Performance Estimation Toolbox (PESTO): automated
worst-case analysis of first-order optimization methods” (CDC 2017)

[In the paper: presentation of the toolbox for first-order optimization methods]
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Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github
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