
Computer-aided analyses for first-order methods

(via semidefinite programming)

Adrien Taylor

SSOPT — June 2019

... great collaborators!

François Glineur
(UCLouvain)

Julien Hendrickx
(UCLouvain)

Etienne de Klerk
(Tilburg & Delft)

Ernest Ryu
(UCLA)

Francis Bach
(Inria/ENS)

Yoel Drori
(Google)

Laurent Lessard
(W-Madison)

Bryan Van Scoy
(W-Madison)

Carolina Bergeling
(Lund)

Pontus Giselsson
(Lund)

1

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

2

How do we prove an algorithm works?

Goal: automate worst-case analyses of optimization algorithms

3

How do we prove an algorithm works?

Goal: automate worst-case analyses of optimization algorithms

3

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

4

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

4

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

4

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

5

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

6

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

with f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

7

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

with f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

7

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

with f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

7

Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

with f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.

8

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm

∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1;

parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2

Matching functions: f (x) = µ
2 x

2 and f (x) = L
2 x

2.

9

Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.

9

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi), gi = f ′(xi) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi) to be interpolable by a function f ∈ Fµ,L.
The new constraint is:

∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1} .

10

From infinite to finite dimensional problems

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1;

new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

From infinite to finite dimensional problems
Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi), gi = f ′(xi), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.

11

Smooth strongly convex interpolation problem
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.

12

Smooth strongly convex interpolation problem
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.

12

Smooth strongly convex interpolation problem
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.

12

Solving PEP via Semidefinite Programming

PEP subject to an existence constraint becomes

max ‖g1‖2

s.t. interpolation constraint (i , j) ∀i , j ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

under interpolation constraint:

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.
Non-convex quadratic program; can be solved using semidefinite programming.

13

Solving PEP via Semidefinite Programming

PEP subject to an existence constraint becomes

max ‖g1‖2

s.t. interpolation constraint (i , j) ∀i , j ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

under interpolation constraint:

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.

Non-convex quadratic program; can be solved using semidefinite programming.

13

Solving PEP via Semidefinite Programming

PEP subject to an existence constraint becomes

max ‖g1‖2

s.t. interpolation constraint (i , j) ∀i , j ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

under interpolation constraint:

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.
Non-convex quadratic program;

can be solved using semidefinite programming.

13

Solving PEP via Semidefinite Programming

PEP subject to an existence constraint becomes

max ‖g1‖2

s.t. interpolation constraint (i , j) ∀i , j ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

under interpolation constraint:

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj)

∥∥2.
Non-convex quadratic program; can be solved using semidefinite programming.

13

Semidefinite programming: lifting procedure

Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]

l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]

l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]

l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Semidefinite programming: lifting procedure
Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.

14

Numerical worst-case computation

What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Numerical worst-case computation
What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2

(tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
≥0, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2

(tight).

16

Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1=
2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2=
2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸
≥0, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).

16

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

17

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

18

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

18

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

18

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

18

Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).

18

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

19

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

20

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2,
- any concave function of fi ’s,

〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

21

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2,
- any concave function of fi ’s,

〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

21

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2,

- any concave function of fi ’s,
〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

21

Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi)− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi)∥∥2,
- any concave function of fi ’s,

〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.

21

Want to give it a try?

Performance EStimation TOolbox (PESTO)

Purpose: automated worst-case analyses of first-order methods
without worrying about modelling steps.

22

Want to give it a try?

Performance EStimation TOolbox (PESTO)

Purpose: automated worst-case analyses of first-order methods
without worrying about modelling steps.

22

Want to give it a try?

Performance EStimation TOolbox (PESTO)

Purpose: automated worst-case analyses of first-order methods
without worrying about modelling steps.

22

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖∇̃f (yi)−∇f (yi)‖ ≤ ε‖∇f (yi)‖.

23

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖∇̃f (yi)−∇f (yi)‖ ≤ ε‖∇f (yi)‖.

23

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖∇̃f (yi)−∇f (yi)‖ ≤ ε‖∇f (yi)‖.

23

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖~∇f(yi)−∇f (yi)‖ ≤ ε‖∇f (yi)‖.

23

PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L

~∇f(yi)

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi)

What if inexact gradient used instead? Relative inaccuracy model:

‖~∇f(yi)−∇f (yi)‖ ≤ ε‖∇f (yi)‖.

23

PESTO example: inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x
?
)

24

PESTO example: inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x
?
)

24

PESTO example: inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x
?
)

ε = 0.5
ε = 0.3
ε = 0.1
ε = 0.0

24

PESTO example: inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc) 1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the

% L-smooth convex minimization problem

% min_x F(x);

% for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

% (gi is the gradient of F at xi)

% ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0; % strong convexity parameter

param.L = 1; % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y = x0;

eps = .1;

for i = 1:N

 d = inexactsubgradient(y, F, eps);

 x{i+1} = y - 1/param.L * d;

 y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs) % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

% "Exact Worst-case Performance of First-order Methods for Composite

% Convex Optimization." to appear in SIAM Journal on Optimization

% (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x
?
)

ε = 0.5
ε = 0.3
ε = 0.1
ε = 0.0

24

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

25

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖∇f (xi)− di‖ ≤ ε‖∇f (xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior: (de Klerk, Glineur, T. 2017)

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

26

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖∇f (xi)− di‖ ≤ ε‖∇f (xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior: (de Klerk, Glineur, T. 2017)

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

26

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖∇f (xi)− di‖ ≤ ε‖∇f (xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior: (de Klerk, Glineur, T. 2017)

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .

26

Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖∇f (xi)− di‖ ≤ ε‖∇f (xi)‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi)

xi+1 = xi − γdi

Worst-case behavior: (de Klerk, Glineur, T. 2017)

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi)− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) . 26

Steepest descent with inexact search directions
Quadratic worst-case function:

f (x) =
1
2

n∑
i=1

λix
2
i where 0 < µ = λ1 ≤ λ2 ≤ . . . ≤ λn = L.

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ

27

Steepest descent with inexact search directions
Quadratic worst-case function:

f (x) =
1
2

n∑
i=1

λix
2
i where 0 < µ = λ1 ≤ λ2 ≤ . . . ≤ λn = L.

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ

27

What does the proof look like?

Aggregate the constraints

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

28

What does the proof look like?

Aggregate the constraints

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

28

What does the proof look like?

Aggregate the constraints

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

28

What does the proof look like?

Aggregate the constraints

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.

28

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 −

2µ
L+3µx? −

3L+µ
L2+3µLg0 −

L+µ
L2+3µLg1

∥∥∥2
− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 −

L+µ
2µL g1

∥∥∥2.

Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

29

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 −

2µ
L+3µx? −

3L+µ
L2+3µLg0 −

L+µ
L2+3µLg1

∥∥∥2
− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 −

L+µ
2µL g1

∥∥∥2.
Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

29

What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 −

2µ
L+3µx? −

3L+µ
L2+3µLg0 −

L+µ
L2+3µLg1

∥∥∥2
− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 −

L+µ
2µL g1

∥∥∥2.
Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.

29

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N

= O(N−2)

,

with θ0 = 1, and:

θi+1 =


1+
√
4θ2i +1
2 if i ≤ N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

30

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N

= O(N−2)

,

with θ0 = 1, and:

θi+1 =


1+
√
4θ2i +1
2 if i ≤ N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

30

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N
= O(N−2),

with θ0 = 1, and:

θi+1 =


1+
√
4θ2i +1
2 if i ≤ N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

30

Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N
= O(N−2),

with θ0 = 1, and:

θi+1 =


1+
√
4θ2i +1
2 if i ≤ N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).

30

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{
f (x) : x ∈ x0 + span{f ′(x0), . . . , f ′(xi−1)}

}
.

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & T. 2018).

31

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
f ′(xi−1) +

1
θi

2
i−1∑
j=0

θj f
′(xj)


α = argmin

α∈R
f (yi + αdi)

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & T. 2018).

32

Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
f ′(xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj f
′(xj)

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & Teboulle 2014), (Kim & Fessler 2016), (Drori & T. 2018).

33

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,

34

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:

� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,

� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)

35

Douglas-Rachford Splitting

Question: When is this T a contraction? What is the smallest ρ such that

‖Tx − Ty‖ ≤ ρ‖x − y‖,

for all x , y ∈ Rd?

Related previous works:

(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson
2017), (Davis & Yin 2017), (Moursi & Vandenberghe 2018), and many others; gentle
introduction to monotone operators (Ryu & Boyd 2016).

36

Douglas-Rachford Splitting

Question: When is this T a contraction? What is the smallest ρ such that

‖Tx − Ty‖ ≤ ρ‖x − y‖,

for all x , y ∈ Rd?

Related previous works:

(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson
2017), (Davis & Yin 2017), (Moursi & Vandenberghe 2018), and many others; gentle
introduction to monotone operators (Ryu & Boyd 2016).

36

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .

37

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),√

(2−θ)
4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

38

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),√

(2−θ)
4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

38

Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),√

(2−θ)
4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.

38

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

39

Smooth strongly convex interpolation

Consider a set S , and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
subgradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find a f ∈ Fµ,L s.t.

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

40

Special case: convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

41

Special case: convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

41

Special case: convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

41

Special case: convex interpolation
Conditions for {(xi , gi , fi)}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec. and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.

41

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function f ∈ F0,L (proper,
closed and convex function with L-Lipschitz gradient).

Counter-example 1: what about the conditions:

fi ≥ fj +
〈
gj , xi − xj

〉
, i , j ∈ S, (C1)

||gi − gj || ≤ L||xi − xj ||.

(x1, g1, f1) = (−1,−2, 1)
(x2, g2, f2) = (0,−1, 0)

x

f

•

•

x1

x2

•

•

satisfies (C1) but cannot be differentiable...

42

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function f ∈ F0,L (proper,
closed and convex function with L-Lipschitz gradient).

Counter-example 1: what about the conditions:

fi ≥ fj +
〈
gj , xi − xj

〉
, i , j ∈ S, (C1)

||gi − gj || ≤ L||xi − xj ||.

(x1, g1, f1) = (−1,−2, 1)
(x2, g2, f2) = (0,−1, 0)

x

f

•

•

x1

x2

•

•

satisfies (C1) but cannot be differentiable...

42

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function f ∈ F0,L (proper,
closed and convex function with L-Lipschitz gradient).

Counter-example 1: what about the conditions:

fi ≥ fj +
〈
gj , xi − xj

〉
, i , j ∈ S, (C1)

||gi − gj || ≤ L||xi − xj ||.

(x1, g1, f1) = (−1,−2, 1)
(x2, g2, f2) = (0,−1, 0)

x

f

•

•

x1

x2

•

•

satisfies (C1) but cannot be differentiable...

42

An approach to smooth convex interpolation

Idea: reduce smooth convex interpolation to convex interpolation.

Basic operations needed in order to transform the problem:

- Conjugation: f is closed, proper and convex, then:
f L-Lipschitz gradient⇔ f ∗ 1

L
-strongly convex.

- Minimal curvature subtraction:
f (x) µ-strongly convex ⇔ f (x)− µ

2 ‖x‖
2 convex.

43

Conjugation (1): Definition

Consider a proper function f : Rd → R ∪ {+∞}, the (Legendre-Fenchel) conjugate of
f is defined as:

f ∗(y) = sup
x∈Rd

〈y , x〉 − f (x),

with f ∗ ∈ F0,∞ (proper, closed and convex).

44

Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45

Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45

Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

Interpolate {(xi , gi , fi)}i∈S by f ∈ F0,L

46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate {(gi , xi , 〈xi , gi 〉 − fi)}i∈S by f ∗ ∈ F1/L,∞.

46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate
{
(gi , xi − gi

L
, 〈xi , gi 〉 − fi − ‖gi‖

2

2L)
}
i∈S

by f̃ ∈ F0,∞.

46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate
{
(x̃i , g̃i , f̃i)

}
i∈S

by f̃ ∈ F0,∞.

46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f̃ (x) = maxj
{
f̃j +

〈
g̃j , x − x̃j

〉}
46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f ∗(x) = maxj
{
f̃j +

〈
g̃j , x − x̃j

〉}
+ ‖x‖

2

2L

46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f (x) =
(
maxj

{
f̃j +

〈
g̃j , x − x̃j

〉}
+ ‖x‖

2

2L

)∗
46

Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f (x) =
(
maxj

{
f̃j +

〈
g̃j , x − x̃j

〉}
+ ‖x‖

2

2L

)∗
46

Conclusion: iff conditions

Using the same reasoning:

The set {(xi , gi , fi)}i∈S is interpolable by a function f ∈ Fµ,L (proper, closed,
µ-strongly convex with L-Lipschitz gradient) iff:

fi − fj −
〈
gj , xi − xj

〉
≥

1
2(1− µ/L)

(
1
L

∥∥gi − gj
∥∥2

+µ
∥∥xi − xj

∥∥2 − 2
µ

L

〈
gj − gi , xj − xi

〉)
.

When µ = 0, those conditions transforms to the well-known

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S.

47

Interpretation: compatible upper and lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

characterize compatibility between upper and lower bounds.

•
x1

•
x2

•
x2

x1 and x2 are compatible.

48

Interpretation: compatible upper and lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

characterize compatibility between upper and lower bounds.

•
x1

•
x2

•
x2

x1 and x2 are not compatible.

48

Interpretation: compatible upper and lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

characterize compatibility between upper and lower bounds.

•
x1

•
x2

•
x2

x1 and x2 are compatible.

48

Interpretation: convex hull of upper bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2

•

•

x1 and x2 are compatible.

49

Interpretation: convex hull of upper bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2
•

•

x1 and x2 are not compatible.

49

Interpretation: smoothed lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2

•

•

x1 and x2 are compatible.

50

Interpretation: smoothed lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2
•

•

x1 and x2 are not compatible.

50

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

51

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,
examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).

52

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:
before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).

53

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

54

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

54

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

54

Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github

References I

[1] N. Bansal and A. Gupta.
Potential-function proofs for first-order methods.
preprint arXiv:1712.04581, 2017.

[2] A. Beck and M. Teboulle.
A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[3] D. Davis and W. Yin.
A three-operator splitting scheme and its optimization applications.
Set-Valued and Variational Analysis, 25(4):829–858, 2017.

[4] E. de Klerk, F. Glineur, and A. B. Taylor.
On the worst-case complexity of the gradient method with exact line search for smooth strongly
convex functions.
Optimization Letters, 11(7):1185–1199, 2017.

[5] J. Douglas and H. H. Rachford.
On the numerical solution of heat conduction problems in two and three space variables.
Transactions of the American Mathematical Society, 82:421–439, 1956.

[6] Y. Drori.
Contributions to the Complexity Analysis of Optimization Algorithms.
PhD thesis, Tel-Aviv University, 2014.

[7] Y. Drori.
The exact information-based complexity of smooth convex minimization.
Journal of Complexity, 39:1–16, 2017.

56

References II

[8] Y. Drori and A. B. Taylor.
Efficient first-order methods for convex minimization: a constructive approach.
Mathematical Programming (to appear), 2019.

[9] Y. Drori and M. Teboulle.
Performance of first-order methods for smooth convex minimization: a novel approach.
Mathematical Programming, 145(1-2):451–482, 2014.

[10] P. Giselsson.
Tight global linear convergence rate bounds for Douglas-Rachford splitting.
Journal of Fixed Point Theory and Applications, 19(4):2241–2270, 2017.

[11] P. Giselsson and S. Boyd.
Diagonal scaling in Douglas-Rachford splitting and ADMM.
In 53rd IEEE Conference on Decision and Control, pages 5033–5039, Los Angeles, CA, Dec. 2014.

[12] P. Giselsson and S. Boyd.
Linear convergence and metric selection for Douglas-Rachford splitting and ADMM.
IEEE Transactions on Automatic Control, 62(2):532–544, 2017.

[13] D. Kim and J. A. Fessler.
Optimized first-order methods for smooth convex minimization.
Mathematical Programming, 159(1-2):81–107, 2016.

[14] D. Kim and J. A. Fessler.
Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex
functions.
preprint arXiv:1803.06600, 2018.

57

References III

[15] L. Lessard, B. Recht, and A. Packard.
Analysis and design of optimization algorithms via integral quadratic constraints.
SIAM Journal on Optimization, 26(1):57–95, 2016.

[16] P. L. Lions and B. Mercier.
Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[17] W. M. Moursi and L. Vandenberghe.
Douglas-Rachford splitting for a Lipschitz continuous and a strongly monotone operator.
arXiv preprint arXiv:1805.09396, 2018.

[18] A. S. Nemirovski.
Orth-method for smooth convex optimization.
Izvestia AN SSSR, Tekhnicheskaya Kibernetika, 2:937–947, 1982.

[19] A. S. Nemirovski and D. B. Yudin.
Problem complexity and method efficiency in optimization.
Willey-Interscience, New York, 1983.

[20] Y. Nesterov.
A method of solving a convex programming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

[21] Y. Nesterov.
Introductory Lectures on Convex Optimization : a Basic Course.
Applied optimization. Kluwer Academic Publishing, 2004.

58

References IV

[22] Y. Nesterov.
Lectures on Convex Optimization.
Springer Optimization and Its Applications. Springer International Publishing, 2018.

[23] E. K. Ryu and S. Boyd.
Primer on monotone operator methods.
Appl. Comput. Math., 15:3–43, 2016.

[24] E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson.
Operator splitting performance estimation: Tight contraction factors and optimal parameter
selection.
preprint arXiv:1812.00146, 2018.

[25] A. B. Taylor and F. Bach.
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential
functions.
Conference on Learning Theory (COLT), 2019.

[26] A. B. Taylor, J. M. Hendrickx, and F. Glineur.
Exact worst-case performance of first-order methods for composite convex optimization.
SIAM Journal on Optimization, 27(3):1283–1313, 2017.

[27] A. B. Taylor, J. M. Hendrickx, and F. Glineur.
Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order
optimization methods.
In IEEE 56th Annual Conference on Decision and Control (CDC), pages 1278–1283, 2017.

59

References V

[28] A. B. Taylor, J. M. Hendrickx, and F. Glineur.
Smooth strongly convex interpolation and exact worst-case performance of first-order methods.
Mathematical Programming, 161(1-2):307–345, 2017.

[29] A. B. Taylor, J. M. Hendrickx, and F. Glineur.
Exact worst-case convergence rates of the proximal gradient method for composite convex
minimization.
Journal of Optimization Theory and Applications, 178(2):455–476, 2018.

[30] A. C. Wilson, B. Recht, and M. I. Jordan.
A Lyapunov analysis of momentum methods in optimization.
preprint arXiv:1611.02635, 2016.

60

	Toy example
	Performance estimation
	Further examples
	Convex interpolation
	Conclusions and discussions

