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Topic’s genealogy and credits

Modern computer-assisted proofs in optimization, “starting points”:

� Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

� Kim and Fessler (2016): optimized methods from semidefinite programming.

� Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

� T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

� performance estimation problems (PEPs)—“optimization point of view”,

� integral quadratic constraints (IQCs)—“control theoretic point of view”.

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).
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How do we prove an algorithm works?

Goal: automate worst-case analyses of optimization algorithms
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Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!
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Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions
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Analysis of a gradient step

We want to solve

min
x∈Rd

f (x)

with f ∈ Fµ,L: class of µ-strongly convex L-smooth functions.

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk ).

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x∗), ‖f ′(xN)‖, ‖xN − x∗‖?
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About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) ≥ f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ ≤ L‖x − y‖,

(2b) (L-smoothness) f (x) ≤ f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.
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Performance estimation problem

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.

Can be solved using semidefinite programming (SDP):

max
{∥∥f ′(x1)∥∥2} = max

{
(1− µγ)2, (1− Lγ)2

}∥∥f ′(x0)∥∥2
Matching functions: f (x) = µ

2 x
2 and f (x) = L

2 x
2.
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From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

The idea:

- replace f by its discrete version:

fi = f (xi ), gi = f ′(xi ) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi ) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi ), gi = f ′(xi ), ∀i ∈ {0, 1} .
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From infinite to finite dimensional problems

Performance estimation problem for a gradient step

max
∥∥f ′(x1)∥∥2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; new formulation:

max ‖g1‖2

s.t. ∃f ∈ Fµ,L : fi = f (xi ), gi = f ′(xi ), ∀i ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

New variables: x0, x1, g0, g1, f0, f1.
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Smooth strongly convex interpolation problem
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj )

∥∥2.
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Solving PEP via Semidefinite Programming

PEP subject to an existence constraint becomes

max ‖g1‖2

s.t. interpolation constraint (i , j) ∀i , j ∈ {0, 1}

x1 = x0 − γg0

‖g0‖2 = R2

under interpolation constraint:

fi ≥ fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj )

∥∥2.
Non-convex quadratic program; can be solved using semidefinite programming.
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Semidefinite programming: lifting procedure

Main difficulty: scalar products...

We stack all variables in a matrix P ∈ Rd×4:

P = [x0 x1 g0 g1]

l d ,

Introduces Gram matrix G � 0, containing all scalar products:

G = P>P =


〈x0, x0〉 〈x0, x1〉 〈x0, g0〉 〈x0, g1〉
〈x1, x0〉 〈x1, x1〉 〈x1, g0〉 〈x1, g1〉
〈g0, x0〉 〈g0, x1〉 〈g0, g0〉 〈g0, g1〉
〈g1, x0〉 〈g1, x1〉 〈g1, g0〉 〈g1, g1〉

 � 0.

Problem from previous slide is linear in G .

From G � 0, we can recover x0, x1, g0 and g1 (Cholesky factorization):

G � 0, rank G ≤ d ⇔ G = P>P with P ∈ Rd×4.

Dimension d ⇔ rank G ≤ d . Rank constraint disappears when d ≥ 4.

SDP without rank constraint ⇔ find smallest dimension-independent guarantee.
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Numerical worst-case computation

What can we do so far?

� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2

G4,4

such that fj − fi + Tr
(
GAij

)
≤ 0, i , j ∈ {0, 1},

G3,3 = R2,

G � 0.

Ex: µ = .1, L = 1, γ = .1, ‖f ′(x0)‖2 = 1, d unspecified; then ‖f ′(x1)‖2 ≤ 0.96.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

15
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� Fix µ, L, R and γ, set up variables {fi}i and G ,

� encode interpolation constraints as fj − fi + Tr
(
GAij

)
≤ 0 for some Aij ’s,

� impose initial condition: ‖f ′(x0)‖2 = G3,3 = R2,

� set up objective: ‖f ′(x1)‖2 = G4,4,

� your laptop can perform the worst-case analysis:

max
G∈S4,f∈R2
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Dual problem: find a proof

Gradient with γ = 1
L
: combine corresponding inequalities

f0 ≥ f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 ≥ f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

Weighted sum with λ1, λ2 ≥ 0 can be reformulated as

(1− γµ)2
∥∥f ′(x0)∥∥2 ≥∥∥f ′(x1)∥∥2 +

2− γ(L+ µ)

γ(L− µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

≥0

, or = 0 when worst-case is achieved

,

≥
∥∥f ′(x1)∥∥2,

leading to ‖f ′(x1)‖2 ≤ (1− µ
L
)2‖f ′(x0)‖2 (tight).
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Performance estimation problems

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

- any dual solution is a worst-case guarantee (i.e., a proof),

- it can be solved using semidefinite programming (SDP).
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Classes of problems

Constrained and regularized optimization problems can be handled, as well:

min
x∈Rd

f (x) + h(x),

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

- convex indicator and support functions,

- non-convex smooth functions,

- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.
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Algorithms

The approach can be used to obtain (tight) results for variety of “fixed-step” methods:

- (sub)gradient methods,

- inexact gradients methods,

- proximal point methods,

- projected and proximal gradients methods,

- conditional gradient methods,

- splitting methods,

- randomized/stochastic gradient methods,

- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).
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Convergence measures

Different convergence measures can be taken into account.

Among others:

- f (xN)− f (x?), ‖xN − x?‖2, ‖f ′(xN)‖2,

- best iterates on the way:

min
0≤i≤N

f (xi )− f (x?), min
0≤i≤N

‖xi − x?‖2, min
0≤i≤N

∥∥f ′(xi )∥∥2,
- any concave function of fi ’s,

〈
xi , gj

〉
’s, ‖gi‖2’s and ‖xi‖2’s.
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Want to give it a try?

Performance EStimation TOolbox (PESTO)

Purpose: automated worst-case analyses of first-order methods
without worrying about modelling steps.
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PESTO example: inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd ), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi )

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi )

What if inexact gradient used instead? Relative inaccuracy model:

‖∇̃f (yi )−∇f (yi )‖ ≤ ε‖∇f (yi )‖.
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clear all; clc;

% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

4 fast prototyping (∼ 20 effective lines)
4 quick analyses (∼ 10 minutes)
4 computer-aided proofs (multipliers)

Iteration counter k

f
(x

k
)
−

f
(x
?
)

24



PESTO example: inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc)  1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite
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% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);
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double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)
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% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N
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    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)
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Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖∇f (xi )− di‖ ≤ ε‖∇f (xi )‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rn), x0 ∈ Rn, 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi )

xi+1 = xi − γdi

Worst-case behavior: (de Klerk, Glineur, T. 2017)

f (xi+1)− f∗ ≤
(
1− κε
1+ κε

)2
(f (xi )− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .
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Steepest descent with inexact search directions
Quadratic worst-case function:

f (x) =
1
2

n∑
i=1

λix
2
i where 0 < µ = λ1 ≤ λ2 ≤ . . . ≤ λn = L.

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ
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What does the proof look like?

Aggregate the constraints

f0 ≥ f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? ≥ f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? ≥ f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g0, g1〉
0 = 〈g1, x1 − x0〉

with multipliers

y1 =
L− µ
L+ µ

, y2 = 2µ
(L− µ)
(L+ µ)2

, y3 =
2µ

L+ µ
, y4 =

2
L+ µ

, y5 = 1.
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What does the proof look like?

Resulting inequality:

f1 − f? ≤
(

L−µ
L+µ

)2
(f0 − f?)

−µL(L+3µ)
2(L+µ)2

∥∥∥x0 − L+µ
L+3µx1 −

2µ
L+3µx? −

3L+µ
L2+3µLg0 −

L+µ
L2+3µLg1

∥∥∥2
− 2Lµ2

L2+2Lµ−3µ2

∥∥∥x1 − x? − (L−µ)2
2µL(L+µ)g0 −

L+µ
2µL g1

∥∥∥2.

Last two terms nonpositive, so

f1 − f? ≤
(
L− µ
L+ µ

)2
(f0 − f?).

One actually has equality at optimality, due to the quadratic example.
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Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d ≥ N + 2) by Drori (2017):

f (xN)− f (x?) ≥
L‖x0 − x?‖2

2θ2N

= O(N−2)

,

with θ0 = 1, and:

θi+1 =


1+
√
4θ2i +1
2 if i ≤ N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{
f (x) : x ∈ x0 + span{f ′(x0), . . . , f ′(xi−1)}

}
.

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & T. 2018).
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
f ′(xi−1) +

1
θi

2
i−1∑
j=0

θj f
′(xj )


α = argmin

α∈R
f (yi + αdi )

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & T. 2018).
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
f ′(xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj f
′(xj )

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) ≤
L‖x0 − x?‖2

2θ2N
.

See (Drori & Teboulle 2014), (Kim & Fessler 2016), (Drori & T. 2018).
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A few more examples

Warning for the next few slides:

� the expressions are horrible,

� barely obtainable by hand,

� computer-generated (Mathematica or Matlab),

� verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story ,
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Douglas-Rachford Splitting

Let A : Rd → 2R
d
, B : Rd → 2R

d
(point-to-set maps) be maximally monotone;

find
x∈Rd

0 ∈ A(x) + B(x).

Examples: A(x) = ∂f (x) and B(x) = ∂h(x) for two convex functions f and h.

Reformulate problem via fixed-point of some T : Rd → Rd . One particular choice:
� let JA = (I + A)−1 and JB = (I + B)−1 being resolvents of A and B,
� let T = I − θJB + θJA(2JB − I ) (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

min
x∈Rd

f (x) + h(x),

amount to iterate:

xk+1 = argminx∈Rd {h(x) + 1
2‖x − wk‖2}

yk+1 = argminy∈Rd {f (y) + 1
2‖y − 2xk+1 + wk‖2}

wk+1 = wk + θ(yk+1 − xk+1)
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Douglas-Rachford Splitting

Question: When is this T a contraction? What is the smallest ρ such that

‖Tx − Ty‖ ≤ ρ‖x − y‖,

for all x , y ∈ Rd?

Related previous works:

(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson
2017), (Davis & Yin 2017), (Moursi & Vandenberghe 2018), and many others; gentle
introduction to monotone operators (Ryu & Boyd 2016).
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Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B β-cocoercive.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



|1− θ β
β+1 | if µβ − µ + β < 0, and θ ≤ 2 (β+1)(µ−β−µβ)

µ+µβ−β−β2−2µβ2 ,

|1− θ 1+µβ
(µ+1)(β+1) | if µβ − µ− β > 0, and θ ≤ 2 µ2+β2+µβ+µ+β−µ2β2

µ2+β2+µ2β+µβ2+µ+β−2µ2β2 ,

|1− θ| if θ ≥ 2 µβ+µ+β2µβ+µ+β ,

|1− θ µ
µ+1 | if µβ + µ− β < 0, and θ ≤ 2 (µ+1)(β−µ−µβ)

β+µβ−µ−µ2−2µ2β
,

X otherwise,

with

X =
√

2−θ
2

√
((2−θ)µ(β+1)−θβ(µ−1)) ((2−θ)β(µ+1)−θµ(β−1))

(2−θ)µβ(µ+1)(β+1)−θµ2β2 .
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Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.

We have ‖Tx − Ty‖ ≤ ρ‖x − y‖ for all x , y ∈ H with:

ρ =



θ+

√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

L2+1
2(µ+1) if (a),

|1− θ L+µ
(µ+1)(L+1) | if (b),√

(2−θ)
4µ(L2+1)

(
θ(L2+1)−2µ(θ+L2−1)

)(
θ
(
1+2µ+L2

)
−2(µ+1)

(
L2+1

))
2µ(θ+L2−1)−(2−θ)(1−L2)

otherwise,

with

(a) µ
−(2(θ−1)µ+θ−2)+L2(θ−2(1+µ))√
(2(θ−1)µ+θ−2)2+L2(θ−2(µ+1))2

≤
√

L2 + 1,

(b) L < 1, µ > L2+1
(L−1)2

, and θ ≤ 2(µ+1)(L+1)(µ+µL2−L2−2µL−1)
2µ2−µ+µL3−L3−3µL2−L2−2µ2L−µL−L−1

.
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Douglas-Rachford Splitting

Assumptions: A µ-strongly monotone, B L-Lipschitz and monotone.
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.
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Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions
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Smooth strongly convex interpolation

Consider a set S , and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
subgradients gi and function values fi .

x

f

•
x0

•
x2

•
x1

? Possible to find a f ∈ Fµ,L s.t.

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.
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Special case: convex interpolation
Conditions for {(xi , gi , fi )}i∈S to be interpolable by a function f ∈ F0,∞ (proper,
closed and convex function) ?

x

f

•
•

•

•

Conditions fi ≥ fj +
〈
gj , xi − xj

〉
is nec.

and suff.

Explicit construction:

f (x) = max
j

{
fj +

〈
gj , x − xj

〉}
,

Not unique.
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Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function f ∈ F0,L (proper,
closed and convex function with L-Lipschitz gradient).

Counter-example 1: what about the conditions:

fi ≥ fj +
〈
gj , xi − xj

〉
, i , j ∈ S, (C1)

||gi − gj || ≤ L||xi − xj ||.

(x1, g1, f1) = (−1,−2, 1)
(x2, g2, f2) = (0,−1, 0)

x

f

•

•

x1

x2

•

•

satisfies (C1) but cannot be differentiable...
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An approach to smooth convex interpolation

Idea: reduce smooth convex interpolation to convex interpolation.

Basic operations needed in order to transform the problem:

- Conjugation: f is closed, proper and convex, then:
f L-Lipschitz gradient⇔ f ∗ 1

L
-strongly convex.

- Minimal curvature subtraction:
f (x) µ-strongly convex ⇔ f (x)− µ

2 ‖x‖
2 convex.
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Conjugation (1): Definition

Consider a proper function f : Rd → R ∪ {+∞}, the (Legendre-Fenchel) conjugate of
f is defined as:

f ∗(y) = sup
x∈Rd

〈y , x〉 − f (x),

with f ∗ ∈ F0,∞ (proper, closed and convex).
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Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45



Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45



Conjugation (2): Useful properties

For f ∈ F0,∞, we have a one-to-one correspondence between f and f ∗, and the
following propositions are equivalent:

(a) f (x) + f ∗(g) = 〈g , x〉,
(b) g ∈ ∂f (x),
(c) x ∈ ∂f ∗(g).

For f ∈ F0,∞, we have: f ∈ F0,L ⇔ f ∗ ∈ F1/L,∞.

Intuition:

� upper bounds become lower bounds; let f , u ∈ F0,∞, we have:

f (x) ≤ u(x) for all x ∈ Rd ⇔ u∗(g) ≤ f ∗(g) for all g ∈ Rd .

� Conjugate of quadratics are quadratics.

45



Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

Interpolate {(xi , gi , fi )}i∈S by f ∈ F0,L
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Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate {(gi , xi , 〈xi , gi 〉 − fi )}i∈S by f ∗ ∈ F1/L,∞.
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Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate
{
(gi , xi − gi

L
, 〈xi , gi 〉 − fi − ‖gi‖

2

2L )
}
i∈S

by f̃ ∈ F0,∞.
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−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

⇔ interpolate
{
(x̃i , g̃i , f̃i )

}
i∈S
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Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f̃ (x) = maxj
{
f̃j +

〈
g̃j , x − x̃j

〉}
46



Example: Smooth Convex Interpolation

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

f ∗(x) = maxj
{
f̃j +

〈
g̃j , x − x̃j

〉}
+ ‖x‖

2

2L
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〈
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Conclusion: iff conditions

Using the same reasoning:

The set {(xi , gi , fi )}i∈S is interpolable by a function f ∈ Fµ,L (proper, closed,
µ-strongly convex with L-Lipschitz gradient) iff:

fi − fj −
〈
gj , xi − xj

〉
≥

1
2(1− µ/L)

(
1
L

∥∥gi − gj
∥∥2

+µ
∥∥xi − xj

∥∥2 − 2
µ

L

〈
gj − gi , xj − xi

〉)
.

When µ = 0, those conditions transforms to the well-known

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S.
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Interpretation: compatible upper and lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

characterize compatibility between upper and lower bounds.

•
x1

•
x2

•
x2

x1 and x2 are compatible.
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Interpretation: convex hull of upper bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2

•

•

x1 and x2 are compatible.
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Interpretation: convex hull of upper bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2
•

•

x1 and x2 are not compatible.
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Interpretation: smoothed lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2

•

•

x1 and x2 are compatible.

50



Interpretation: smoothed lower bounds
Smooth convex interpolation conditions

fj ≥ fi +
〈
gi , xj − xi

〉
+

1
2L

∥∥gi − gj
∥∥2 ∀i , j ∈ S

ensure you can perform the following interpolation procedure:

•
x1

•
x2
•

•

x1 and x2 are not compatible.
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Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions
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Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,
details in (T, Hendrickx & Glineur 2017),

, fair amount of generalizations (finite sums, constraints, prox, etc.),
details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi &
Liu 2017), (de Klerk et al. 2017), etc.

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

examples in (Kim & Fessler 2016 2018).

, allows reaching proofs that could barely be obtained by hand,

, easy to try via Performance EStimation TOolbox (PESTO).
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Concluding remarks
Performance estimation’s philosophy

� numerically allows to obtain tight bounds (rigorous baselines),

� helps designing analytical proofs (reduces to linear combinations of inequalities),

� fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

� Second-order methods?

� Interpolation and formulations with non-Euclidean geometries?

� How to generically end up with optimal schemes and lower-bounds?

� Beyond worst-case analyses?

� And many others...

Three recent works:

� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).
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� “Stochastic first-order methods: non-asymptotic and computer-aided analyses
via potential functions” (COLT 2019, with F. Bach),

� “Operator Splitting Performance Estimation: Tight contraction factors and
optimal parameter selection” (2018, with E. Ryu, C. Bergeling and P. Giselsson),

� “Efficient first-order methods for convex minimization: a constructive approach”
(MP 2019, with Y. Drori).
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Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!
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Thanks! Questions?
www.di.ens.fr/∼ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github
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