Computer-aided analyses for first-order methods (via semidefinite programming)

Adrien Taylor

SSOPT — June 2019

... great collaborators!

François Glineur (UCLouvain)

Francis Bach (Inria/ENS)

Julien Hendrickx (UCLouvain)

Yoel Drori (Google)

Carolina Bergeling (Lund)

Etienne de Klerk (Tilburg & Delft)

Laurent Lessard (W-Madison)

Pontus Giselsson (Lund)

Ernest Ryu (UCLA)

Bryan Van Scoy (W-Madison)

Modern computer-assisted proofs in optimization, "starting points":

◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ◊ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ◊ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Modern computer-assisted proofs in optimization, "starting points":

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ♦ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

Modern computer-assisted proofs in optimization, "starting points":

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ◊ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

◊ performance estimation problems (PEPs)—"optimization point of view",

Modern computer-assisted proofs in optimization, "starting points":

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ◊ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

- ◊ performance estimation problems (PEPs)—"optimization point of view",
- ♦ integral quadratic constraints (IQCs)—"control theoretic point of view".

Modern computer-assisted proofs in optimization, "starting points":

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ♦ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

- ◊ performance estimation problems (PEPs)—"optimization point of view",
- ◊ integral quadratic constraints (IQCs)—"control theoretic point of view".

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

Modern computer-assisted proofs in optimization, "starting points":

- ◊ Drori and Teboulle (2014): worst-case bounds via semidefinite programming.
- ◊ Kim and Fessler (2016): optimized methods from semidefinite programming.
- ♦ Lessard, Recht, Packard (2016): linear convergence bounds using control theory.
- ♦ T., Hendrickx and Glineur (2017): tightness and generalizations.

Taken further by different groups... mostly relying on the same ideas:

- ◊ performance estimation problems (PEPs)—"optimization point of view",
- ◊ integral quadratic constraints (IQCs)—"control theoretic point of view".

In this presentation: PEPs, through lens of T., Hendrickx and Glineur (2017).

All codes used here can be found on github (link at the end).

How do we prove an algorithm works?

How do we prove an algorithm works? Goal: automate worst-case analyses of optimization algorithms

Take-home messages

Worst-cases are solutions to optimization problems.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

We want to solve

 $\min_{x\in\mathbb{R}^d}f(x)$

with $f \in \mathcal{F}_{\mu,L}$: class of μ -strongly convex *L*-smooth functions.

We want to solve

 $\min_{x\in\mathbb{R}^d}f(x)$

with $f \in \mathcal{F}_{\mu,L}$: class of μ -strongly convex *L*-smooth functions.

(Gradient method) We decide to use: $x_{k+1} = x_k - \gamma f'(x_k)$.

We want to solve

 $\min_{x\in\mathbb{R}^d}f(x)$

with $f \in \mathcal{F}_{\mu,L}$: class of μ -strongly convex *L*-smooth functions.

(Gradient method) We decide to use: $x_{k+1} = x_k - \gamma f'(x_k)$.

Question: what a priori guarantees after N iterations?

We want to solve

 $\min_{x\in\mathbb{R}^d}f(x)$

with $f \in \mathcal{F}_{\mu,L}$: class of μ -strongly convex *L*-smooth functions.

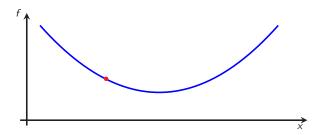
(Gradient method) We decide to use: $x_{k+1} = x_k - \gamma f'(x_k)$.

Question: what a priori guarantees after N iterations?

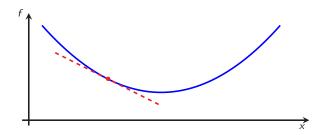
Examples: what about $f(x_N) - f(x_*)$, $||f'(x_N)||$, $||x_N - x_*||$?

Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (μ -strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:

Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (μ -strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:

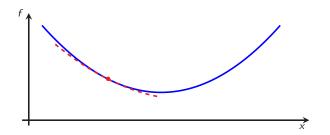


Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (μ -strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:



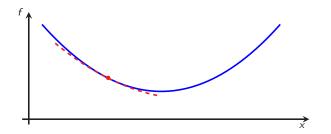
(1) (Convexity) $f(x) \ge f(y) + \langle f'(y), x - y \rangle$,

Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (µ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:



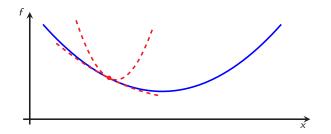
- (1) (Convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle$,
- (1b) (μ -strong convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle + \frac{\mu}{2} ||x y||^2$,

Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (μ -strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:



- (1) (Convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle$,
- (1b) (μ -strong convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle + \frac{\mu}{2} ||x y||^2$,
 - (2) (L-smoothness) $||f'(x) f'(y)|| \le L||x y||,$

Consider a differentiable function $f : \mathbb{R}^d \to \mathbb{R}$, f is (μ -strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^d$ we have:



- (1) (Convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle$,
- (1b) (μ -strong convexity) $f(x) \ge f(y) + \langle f'(y), x y \rangle + \frac{\mu}{2} ||x y||^2$,
 - (2) (L-smoothness) $||f'(x) f'(y)|| \le L||x y||$,
- (2b) (L-smoothness) $f(x) \leq f(y) + \langle f'(y), x y \rangle + \frac{L}{2} ||x y||^2$.

Performance estimation problem for a gradient step

 $\max \|f'(x_1)\|^2$
s.t. $f \in \mathcal{F}_{\mu,L}$

Functional class

Performance estimation problem for a gradient step

$$\begin{split} \max & \left\|f'(x_1)\right\|^2\\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class}\\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \end{split}$$

Performance estimation problem for a gradient step

 $\begin{aligned} \max & \left\| f'(x_1) \right\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \left\| f'(x_0) \right\|^2 = R^2 & \text{Initial condition} \end{aligned}$

Performance estimation problem for a gradient step

 $\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$

<u>Variables</u>: f, x_0 , x_1 ;

Performance estimation problem for a gradient step

 $\begin{aligned} \max & \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \|f'(x_0)\|^2 = R^2 & \text{Initial condition} \end{aligned}$

<u>Variables</u>: f, x_0 , x_1 ; parameters: μ , L, γ , R.

Performance estimation problem for a gradient step

 $\begin{aligned} \max & \left\| f'(x_1) \right\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \left\| f'(x_0) \right\|^2 = R^2 & \text{Initial condition} \end{aligned}$

<u>Variables</u>: f, x_0 , x_1 ; parameters: μ , L, γ , R.

Can be solved using semidefinite programming (SDP):

$$\max\left\{\left\|f'(x_{1})\right\|^{2}\right\} = \max\left\{(1-\mu\gamma)^{2},(1-L\gamma)^{2}\right\}\left\|f'(x_{0})\right\|^{2}$$

Performance estimation problem for a gradient step

 $\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$

<u>Variables</u>: f, x_0 , x_1 ; parameters: μ , L, γ , R.

Can be solved using semidefinite programming (SDP):

$$\max\left\{\left\|f'(x_{1})\right\|^{2}\right\} = \max\left\{(1-\mu\gamma)^{2},(1-L\gamma)^{2}\right\}\left\|f'(x_{0})\right\|^{2}$$

Matching functions: $f(x) = \frac{\mu}{2}x^2$ and $f(x) = \frac{L}{2}x^2$.

As it is, the previous problem does not seem very practical...

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?
- How to cope with the constraint $f \in \mathcal{F}_{\mu,L}$?

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?
- How to cope with the constraint $f \in \mathcal{F}_{\mu,L}$?

The idea:

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?
- How to cope with the constraint $f \in \mathcal{F}_{\mu,L}$?

The idea:

- replace *f* by its discrete version:

$$f_i = f(x_i), \ g_i = f'(x_i) \quad \forall i \in \{0, 1\}.$$

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?
- How to cope with the constraint $f \in \mathcal{F}_{\mu,L}$?

The idea:

- replace *f* by its discrete version:

$$f_i = f(x_i), \ g_i = f'(x_i) \quad \forall i \in \{0, 1\}.$$

- Require points (x_i, g_i, f_i) to be interpolable by a function $f \in \mathcal{F}_{\mu,L}$.

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f?
- How to cope with the constraint $f \in \mathcal{F}_{\mu,L}$?

The idea:

- replace *f* by its discrete version:

$$f_i = f(x_i), \ g_i = f'(x_i) \quad \forall i \in \{0, 1\}.$$

 Require points (x_i, g_i, f_i) to be interpolable by a function f ∈ F_{μ,L}. The new constraint is:

$$\exists f \in \mathcal{F}_{\mu,L}: f_i = f(x_i), g_i = f'(x_i), \quad \forall i \in \{0,1\}.$$

Performance estimation problem for a gradient step

 $\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$

Performance estimation problem for a gradient step

 $\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$

Variables: f, x_0 , x_1 ;

Performance estimation problem for a gradient step

 $\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t.} \ f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$

<u>Variables</u>: f, x_0 , x_1 ; new formulation:

Performance estimation problem for a gradient step

$$\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$$

Algorithm

Variables: f, x_0 , x_1 ; new formulation:

 $\max \|g_1\|^2$

Performance estimation problem for a gradient step

$$\begin{aligned} \max & \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \|f'(x_0)\|^2 = R^2 & \text{Initial condition} \end{aligned}$$

<u>Variables</u>: f, x_0 , x_1 ; new formulation:

$$\begin{split} &\max \, \|g_1\|^2 \\ &\text{s.t. } \exists f \in \mathcal{F}_{\mu,L}: \ f_i = f(x_i), \ g_i = f'(x_i), \\ &\forall i \in \{0,1\} \end{split}$$

Performance estimation problem for a gradient step

$$\begin{aligned} \max & \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \|f'(x_0)\|^2 = R^2 & \text{Initial condition} \end{aligned}$$

<u>Variables</u>: f, x_0 , x_1 ; new formulation:

 $\begin{aligned} &\max \|g_1\|^2 \\ &\text{s.t. } \exists f \in \mathcal{F}_{\mu,L}: \ f_i = f(x_i), \ g_i = f'(x_i), \\ & \forall i \in \{0,1\} \\ & x_1 = x_0 - \gamma g_0 \end{aligned}$

Performance estimation problem for a gradient step

$$\begin{aligned} \max \|f'(x_1)\|^2 \\ \text{s.t.} \ f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ x_1 &= x_0 - \gamma f'(x_0) & \text{Algorithm} \\ \|f'(x_0)\|^2 &= R^2 & \text{Initial condition} \end{aligned}$$

<u>Variables</u>: f, x_0 , x_1 ; new formulation:

 $\begin{aligned} \max \|g_1\|^2 \\ \text{s.t. } & \exists f \in \mathcal{F}_{\mu,L} : \ f_i = f(x_i), \ g_i = f'(x_i), \\ & \forall i \in \{0,1\} \\ & x_1 = x_0 - \gamma g_0 \\ & \|g_0\|^2 = R^2 \end{aligned}$

Performance estimation problem for a gradient step

$$\begin{aligned} \max & \|f'(x_1)\|^2 \\ \text{s.t. } f \in \mathcal{F}_{\mu,L} & \text{Functional class} \\ & x_1 = x_0 - \gamma f'(x_0) & \text{Algorithm} \\ & \|f'(x_0)\|^2 = R^2 & \text{Initial condition} \end{aligned}$$

<u>Variables</u>: f, x_0 , x_1 ; new formulation:

 $\begin{aligned} \max \|g_1\|^2 \\ \text{s.t. } \exists f \in \mathcal{F}_{\mu,L} : \ f_i = f(x_i), \ g_i = f'(x_i), \\ x_1 = x_0 - \gamma g_0 \\ \|g_0\|^2 = R^2 \end{aligned}$

New variables: x_0 , x_1 , g_0 , g_1 , f_0 , f_1 .

Smooth strongly convex interpolation problem

Consider an index set S, and its associated values $\{(x_i, g_i, f_i)\}_{i \in S}$ with coordinates x_i , (sub)gradients g_i and function values f_i .

Smooth strongly convex interpolation problem

Consider an index set S, and its associated values $\{(x_i, g_i, f_i)\}_{i \in S}$ with coordinates x_i , (sub)gradients g_i and function values f_i .

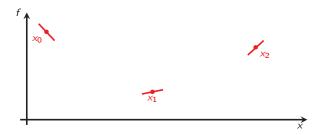


? Possible to find $f \in \mathcal{F}_{\mu,L}$ such that

 $f(x_i) = f_i$, and $g_i \in \partial f(x_i)$, $\forall i \in S$.

Smooth strongly convex interpolation problem

Consider an index set S, and its associated values $\{(x_i, g_i, f_i)\}_{i \in S}$ with coordinates x_i , (sub)gradients g_i and function values f_i .



? Possible to find $f \in \mathcal{F}_{\mu,L}$ such that

$$f(x_i) = f_i$$
, and $g_i \in \partial f(x_i)$, $\forall i \in S$.

- Necessary and sufficient condition: $\forall i, j \in S$

$$f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2 + \frac{\mu}{2(1-\mu/L)} \|x_i - x_j - \frac{1}{L}(g_i - g_j)\|^2.$$

PEP subject to an existence constraint becomes

 $\max \|g_1\|^2$

s.t. interpolation constraint $(i, j) \ \forall i, j \in \{0, 1\}$

 $x_1 = x_0 - \gamma g_0$ $\|g_0\|^2 = R^2$

under interpolation constraint:

PEP subject to an existence constraint becomes

 $\max \|g_1\|^2$

s.t. interpolation constraint $(i,j) \forall i,j \in \{0,1\}$

 $x_1 = x_0 - \gamma g_0$ $\|g_0\|^2 = R^2$

under interpolation constraint:

$$f_i \ge f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2 + \frac{\mu}{2(1-\mu/L)} \|x_i - x_j - \frac{1}{L}(g_i - g_j)\|^2.$$

PEP subject to an existence constraint becomes

 $\max \|g_1\|^2$

s.t. interpolation constraint $(i,j) \forall i,j \in \{0,1\}$

 $x_1 = x_0 - \gamma g_0$ $\|g_0\|^2 = R^2$

under interpolation constraint:

$$f_i \ge f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2 + \frac{\mu}{2(1-\mu/L)} \|x_i - x_j - \frac{1}{L}(g_i - g_j)\|^2.$$

Non-convex quadratic program;

PEP subject to an existence constraint becomes

 $\max \|g_1\|^2$

s.t. interpolation constraint $(i,j) \forall i,j \in \{0,1\}$

 $x_1 = x_0 - \gamma g_0$ $\|g_0\|^2 = R^2$

under interpolation constraint:

$$f_i \ge f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2 + \frac{\mu}{2(1-\mu/L)} \|x_i - x_j - \frac{1}{L}(g_i - g_j)\|^2.$$

Non-convex quadratic program; can be solved using semidefinite programming.

Main difficulty: scalar products...

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

 $P = [x_0 \ x_1 \ g_0 \ g_1]$

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

 $P = [x_0 \ x_1 \ g_0 \ g_1] \ \mathbf{d},$

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

 $P = [x_0 \ x_1 \ g_0 \ g_1] \ \mathbf{d},$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

$$P = [x_0 \ x_1 \ g_0 \ g_1] \updownarrow \mathbf{d},$$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

$$G = P^{\top}P = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{x}_0 \rangle & \langle \mathbf{x}_0, \mathbf{x}_1 \rangle & \langle \mathbf{x}_0, g_0 \rangle & \langle \mathbf{x}_0, g_1 \rangle \\ \langle \mathbf{x}_1, \mathbf{x}_0 \rangle & \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, g_0 \rangle & \langle \mathbf{x}_1, g_1 \rangle \\ \langle g_0, \mathbf{x}_0 \rangle & \langle g_0, \mathbf{x}_1 \rangle & \langle g_0, g_0 \rangle & \langle g_0, g_1 \rangle \\ \langle g_1, \mathbf{x}_0 \rangle & \langle g_1, \mathbf{x}_1 \rangle & \langle g_1, g_0 \rangle & \langle g_1, g_1 \rangle \end{pmatrix} \succeq \mathbf{0}.$$

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

$$P = [x_0 \ x_1 \ g_0 \ g_1] \uparrow \ \mathbf{d},$$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

$$G = P^{\top}P = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{x}_0 \rangle & \langle \mathbf{x}_0, \mathbf{x}_1 \rangle & \langle \mathbf{x}_0, \mathbf{g}_0 \rangle & \langle \mathbf{x}_0, \mathbf{g}_1 \rangle \\ \langle \mathbf{x}_1, \mathbf{x}_0 \rangle & \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, \mathbf{g}_0 \rangle & \langle \mathbf{x}_1, \mathbf{g}_1 \rangle \\ \langle \mathbf{g}_0, \mathbf{x}_0 \rangle & \langle \mathbf{g}_0, \mathbf{x}_1 \rangle & \langle \mathbf{g}_0, \mathbf{g}_0 \rangle & \langle \mathbf{g}_0, \mathbf{g}_1 \rangle \\ \langle \mathbf{g}_1, \mathbf{x}_0 \rangle & \langle \mathbf{g}_1, \mathbf{x}_1 \rangle & \langle \mathbf{g}_1, \mathbf{g}_0 \rangle & \langle \mathbf{g}_1, \mathbf{g}_1 \rangle \end{pmatrix} \succeq \mathbf{0}.$$

Problem from previous slide is linear in G.

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

$$P = [x_0 \ x_1 \ g_0 \ g_1] \ \ \mathbf{d},$$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

$$G = P^{\top}P = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{x}_0 \rangle & \langle \mathbf{x}_0, \mathbf{x}_1 \rangle & \langle \mathbf{x}_0, g_0 \rangle & \langle \mathbf{x}_0, g_1 \rangle \\ \langle \mathbf{x}_1, \mathbf{x}_0 \rangle & \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, g_0 \rangle & \langle \mathbf{x}_1, g_1 \rangle \\ \langle g_0, \mathbf{x}_0 \rangle & \langle g_0, \mathbf{x}_1 \rangle & \langle g_0, g_0 \rangle & \langle g_0, g_1 \rangle \\ \langle g_1, \mathbf{x}_0 \rangle & \langle g_1, \mathbf{x}_1 \rangle & \langle g_1, g_0 \rangle & \langle g_1, g_1 \rangle \end{pmatrix} \succeq \mathbf{0}.$$

Problem from previous slide is linear in G.

From $G \succeq 0$, we can recover x_0 , x_1 , g_0 and g_1 (Cholesky factorization):

$$G \succeq 0$$
, rank $G \leq d \Leftrightarrow G = P^{\top}P$ with $P \in \mathbb{R}^{d \times 4}$.

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

$$P = [x_0 \ x_1 \ g_0 \ g_1] \ \ \mathbf{d},$$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

$$G = P^{\top}P = \begin{pmatrix} \langle x_0, x_0 \rangle & \langle x_0, x_1 \rangle & \langle x_0, g_0 \rangle & \langle x_0, g_1 \rangle \\ \langle x_1, x_0 \rangle & \langle x_1, x_1 \rangle & \langle x_1, g_0 \rangle & \langle x_1, g_1 \rangle \\ \langle g_0, x_0 \rangle & \langle g_0, x_1 \rangle & \langle g_0, g_0 \rangle & \langle g_0, g_1 \rangle \\ \langle g_1, x_0 \rangle & \langle g_1, x_1 \rangle & \langle g_1, g_0 \rangle & \langle g_1, g_1 \rangle \end{pmatrix} \succeq 0.$$

Problem from previous slide is linear in G.

From $G \succeq 0$, we can recover x_0 , x_1 , g_0 and g_1 (Cholesky factorization):

$$G \succeq 0$$
, rank $G \leq d \Leftrightarrow G = P^{\top}P$ with $P \in \mathbb{R}^{d \times 4}$.

Dimension $d \Leftrightarrow \operatorname{rank} G \leq d$. Rank constraint disappears when $d \geq 4$.

Main difficulty: scalar products...

We stack all variables in a matrix $P \in \mathbb{R}^{d \times 4}$:

$$P = [x_0 \ x_1 \ g_0 \ g_1] \ \ \mathbf{d},$$

Introduces Gram matrix $G \succeq 0$, containing all scalar products:

$$G = P^{\top}P = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{x}_0 \rangle & \langle \mathbf{x}_0, \mathbf{x}_1 \rangle & \langle \mathbf{x}_0, g_0 \rangle & \langle \mathbf{x}_0, g_1 \rangle \\ \langle \mathbf{x}_1, \mathbf{x}_0 \rangle & \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, g_0 \rangle & \langle \mathbf{x}_1, g_1 \rangle \\ \langle g_0, \mathbf{x}_0 \rangle & \langle g_0, \mathbf{x}_1 \rangle & \langle g_0, g_0 \rangle & \langle g_0, g_1 \rangle \\ \langle g_1, \mathbf{x}_0 \rangle & \langle g_1, \mathbf{x}_1 \rangle & \langle g_1, g_0 \rangle & \langle g_1, g_1 \rangle \end{pmatrix} \succeq \mathbf{0}.$$

Problem from previous slide is linear in G.

From $G \succeq 0$, we can recover x_0 , x_1 , g_0 and g_1 (Cholesky factorization):

$$G \succeq 0$$
, rank $G \leq d \Leftrightarrow G = P^{\top}P$ with $P \in \mathbb{R}^{d \times 4}$.

Dimension $d \Leftrightarrow \operatorname{rank} G \leq d$. Rank constraint disappears when $d \geq 4$.

SDP without rank constraint \Leftrightarrow find smallest dimension-independent guarantee.

Numerical worst-case computation

Numerical worst-case computation

What can we do so far?

Numerical worst-case computation

What can we do so far?

 \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathit{GA}_{ij}}}
 ight) \le 0$ for some ${\mathit{A}_{ij}}$'s,

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left(\mathcal{GA}_{ij}
 ight) \leq 0$ for some \mathcal{A}_{ij} 's,
- ♦ impose initial condition: $||f'(x_0)||^2 = G_{3,3} = R^2$,

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathcal{GA}_{ij}}}
 ight) \le 0$ for some ${\mathcal{A}_{ij}}$'s,
- ♦ impose initial condition: $\|f'(x_0)\|^2 = G_{3,3} = R^2$,
- \diamond set up objective: $\|f'(x_1)\|^2 = G_{4,4}$,

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathcal{GA}_{ij}}}
 ight) \le 0$ for some ${{\mathcal{A}_{ij}}}$'s,
- $\diamond \ \ \text{impose initial condition:} \ \|f'(x_0)\|^2 = G_{3,3} = R^2,$
- \diamond set up objective: $\|f'(x_1)\|^2 = G_{4,4}$,
- ◊ your laptop can perform the worst-case analysis:

such that
$$f_j - f_i + \operatorname{Tr} (GA_{ij}) \leq 0,$$
 $i, j \in \{0, 1\},$
 $G_{3,3} = R^2,$
 $G \succeq 0.$

What can we do so far?

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathcal{GA}_{ij}}}
 ight) \le 0$ for some ${\mathcal{A}_{ij}}$'s,
- $\diamond \ \ \text{impose initial condition:} \ \|f'(x_0)\|^2 = G_{3,3} = R^2,$
- \diamond set up objective: $\|f'(x_1)\|^2 = G_{4,4}$,
- ◊ your laptop can perform the worst-case analysis:

$$\begin{array}{l} \displaystyle\max_{G\in\mathbb{S}^4,f\in\mathbb{R}^2} {\mathcal{G}}_{4,4}\\ \text{such that } f_j-f_i+\operatorname{Tr}\left({\mathcal{G}}{\mathcal{A}}_{ij}\right)\leq 0, \qquad i,j\in\{0,1\},\\ {\mathcal{G}}_{3,3}=R^2,\\ {\mathcal{G}}\succeq 0. \end{array}$$

Ex: $\mu = .1$, L = 1, $\gamma = .1$, $\|f'(x_0)\|^2 = 1$, *d* unspecified; then $\|f'(x_1)\|^2 \le 0.96$.

What can we do so far?

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathcal{GA}_{ij}}}
 ight) \le 0$ for some ${\mathcal{A}_{ij}}$'s,
- $\diamond \ \, \text{impose initial condition:} \ \, \|f'(x_0)\|^2 = G_{3,3} = R^2,$
- \diamond set up objective: $\|f'(x_1)\|^2 = G_{4,4}$,
- ◊ your laptop can perform the worst-case analysis:

$$\begin{array}{l} \displaystyle\max_{G\in\mathbb{S}^4,f\in\mathbb{R}^2} G_{4,4}\\ \text{such that } f_j-f_i+\operatorname{Tr}\left(GA_{ij}\right)\leq 0, \qquad i,j\in\{0,1\},\\ G_{3,3}=R^2,\\ G\succeq 0.\end{array}$$

Ex: $\mu = .1$, L = 1, $\gamma = .1$, $\|f'(x_0)\|^2 = 1$, *d* unspecified; then $\|f'(x_1)\|^2 \le 0.96$.

Can we translate that into analytical guarantees?

What can we do so far?

- \diamond Fix μ , L, R and γ , set up variables $\{f_i\}_i$ and G,
- \diamond encode interpolation constraints as $f_j f_i + \mathrm{Tr}\left({{\mathcal{GA}_{ij}}}
 ight) \le 0$ for some ${\mathcal{A}_{ij}}$'s,
- $\diamond \ \ \text{impose initial condition:} \ \|f'(x_0)\|^2 = G_{3,3} = R^2,$
- \diamond set up objective: $\|f'(x_1)\|^2 = G_{4,4}$,
- ◊ your laptop can perform the worst-case analysis:

$$\begin{array}{l} \displaystyle\max_{G\in\mathbb{S}^4,f\in\mathbb{R}^2} G_{4,4}\\ \text{such that } f_j-f_i+\operatorname{Tr}\left(GA_{ij}\right)\leq 0, \qquad i,j\in\{0,1\},\\ G_{3,3}=R^2,\\ G\succeq 0.\end{array}$$

Ex: $\mu = .1$, L = 1, $\gamma = .1$, $\|f'(x_0)\|^2 = 1$, *d* unspecified; then $\|f'(x_1)\|^2 \le 0.96$.

Can we translate that into analytical guarantees?

Yes, using Lagrange duality!

Gradient with $\gamma = \frac{1}{l}$: combine corresponding inequalities

Gradient with $\gamma = \frac{1}{l}$: combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} &+ \langle f'(\mathbf{x}_{1}), \mathbf{x}_{0} - \mathbf{x}_{1} \rangle + \frac{1}{2L} \|f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})\|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \|\mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}))\|^{2} & :\lambda_{1} \\ f_{1} &\geq f_{0} &+ \langle f'(\mathbf{x}_{0}), \mathbf{x}_{1} - \mathbf{x}_{0} \rangle + \frac{1}{2L} \|f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})\|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \|\mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}))\|^{2} & :\lambda_{2} \end{split}$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} &+ \langle f'(\mathbf{x}_{1}), \mathbf{x}_{0} - \mathbf{x}_{1} \rangle + \frac{1}{2L} \| f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| \mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})) \|^{2} \\ f_{1} &\geq f_{0} &+ \langle f'(\mathbf{x}_{0}), \mathbf{x}_{1} - \mathbf{x}_{0} \rangle + \frac{1}{2L} \| f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| \mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})) \|^{2} \\ \end{split}$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} &+ \langle f'(\mathbf{x}_{1}), \mathbf{x}_{0} - \mathbf{x}_{1} \rangle + \frac{1}{2L} \|f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})\|^{2} \\ &+ \frac{\mu}{2(1-\mu/L)} \|\mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}))\|^{2} \\ f_{1} &\geq f_{0} &+ \langle f'(\mathbf{x}_{0}), \mathbf{x}_{1} - \mathbf{x}_{0} \rangle + \frac{1}{2L} \|f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1})\|^{2} \\ &+ \frac{\mu}{2(1-\mu/L)} \|\mathbf{x}_{0} - \mathbf{x}_{1} - \frac{1}{L} (f'(\mathbf{x}_{0}) - f'(\mathbf{x}_{1}))\|^{2} \\ \end{split} : \lambda_{1} &= \frac{2}{\gamma} (1-\mu\gamma) \\ \lambda_{2} &= \frac{2}{\gamma} (1-\mu\gamma) \\ \lambda_{2} &= \frac{2}{\gamma} (1-\mu\gamma) \\ \lambda_{2} &= \frac{2}{\gamma} (1-\mu\gamma) \\ \end{split}$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &\quad + \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &\quad + \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma) \\ \end{split}$$

$$(1 - \gamma \mu)^2 \|f'(x_0)\|^2 \ge \|f'(x_1)\|^2 + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)}}_{\gamma(L - \mu)} \|(1 - \mu \gamma)f'(x_0) - f'(x_1)\|^2,$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &\quad + \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &\quad + \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma) \\ \end{split}$$

$$(1 - \gamma \mu)^{2} \|f'(x_{0})\|^{2} \geq \|f'(x_{1})\|^{2} + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)} \|(1 - \mu\gamma)f'(x_{0}) - f'(x_{1})\|^{2}}_{\geq 0},$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma) \\ \end{split}$$

$$(1 - \gamma \mu)^{2} \|f'(x_{0})\|^{2} \ge \|f'(x_{1})\|^{2} + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)} \|(1 - \mu\gamma)f'(x_{0}) - f'(x_{1})\|^{2}}_{\ge 0},$$
$$\ge \|f'(x_{1})\|^{2},$$

Gradient with $\gamma=\frac{\mathbf{1}}{L}:$ combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma)$$

Weighted sum with $\lambda_1, \lambda_2 \ge 0$ can be reformulated as

$$(1 - \gamma \mu)^{2} \|f'(x_{0})\|^{2} \geq \|f'(x_{1})\|^{2} + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)} \|(1 - \mu \gamma)f'(x_{0}) - f'(x_{1})\|^{2}}_{\geq 0},$$

$$\geq \|f'(x_{1})\|^{2},$$

leading to $\|f'(x_1)\|^2 \leq (1 - \frac{\mu}{L})^2 \|f'(x_0)\|^2$

Gradient with $\gamma = \frac{1}{L}$: combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma) \\ \end{split}$$

Weighted sum with $\lambda_1,\lambda_2\geq 0$ can be reformulated as

$$(1 - \gamma \mu)^2 \|f'(x_0)\|^2 \ge \|f'(x_1)\|^2 + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)}}_{\ge 0, \text{ or } = 0 \text{ when worst-case is achieved}}_{\ge \|f'(x_1)\|^2, }$$

leading to $\|f'(x_1)\|^2 \le (1 - \frac{\mu}{L})^2 \|f'(x_0)\|^2$

Gradient with $\gamma = \frac{1}{L}$: combine corresponding inequalities

$$\begin{split} f_{0} &\geq f_{1} \quad + \langle f'(x_{1}), x_{0} - x_{1} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{1} = \frac{2}{\gamma} (1 - \mu\gamma) \\ f_{1} &\geq f_{0} \quad + \langle f'(x_{0}), x_{1} - x_{0} \rangle + \frac{1}{2L} \| f'(x_{0}) - f'(x_{1}) \|^{2} \\ &+ \frac{\mu}{2(1 - \mu/L)} \| x_{0} - x_{1} - \frac{1}{L} (f'(x_{0}) - f'(x_{1})) \|^{2} \qquad \qquad : \lambda_{2} = \frac{2}{\gamma} (1 - \mu\gamma) \\ \end{split}$$

Weighted sum with $\lambda_1, \lambda_2 \ge 0$ can be reformulated as

$$(1 - \gamma \mu)^2 \|f'(x_0)\|^2 \ge \|f'(x_1)\|^2 + \underbrace{\frac{2 - \gamma(L + \mu)}{\gamma(L - \mu)}}_{\ge 0, \text{ or } = 0 \text{ when worst-case is achieved}}_{\ge \|f'(x_1)\|^2, }$$

leading to $\|f'(x_1)\|^2 \le (1 - \frac{\mu}{L})^2 \|f'(x_0)\|^2$ (tight).

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

The approach we used for the gradient method can be used for a variety of methods.

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),
- any dual solution is a worst-case guarantee (i.e., a proof),

The approach we used for the gradient method can be used for a variety of methods.

Some attractive features of the approach:

- any primal solution is a lower bound (i.e., a function),
- any dual solution is a worst-case guarantee (i.e., a proof),
- it can be solved using semidefinite programming (SDP).

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

for different functional classes:

- different types of (smooth or non-smooth) convex functions,

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

- different types of (smooth or non-smooth) convex functions,
- convex indicator and support functions,

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

- different types of (smooth or non-smooth) convex functions,
- convex indicator and support functions,
- non-convex smooth functions,

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

- different types of (smooth or non-smooth) convex functions,
- convex indicator and support functions,
- non-convex smooth functions,
- any class whose interpolation conditions are SDP-representable.

Constrained and regularized optimization problems can be handled, as well:

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

for different functional classes:

- different types of (smooth or non-smooth) convex functions,
- convex indicator and support functions,
- non-convex smooth functions,
- any class whose interpolation conditions are SDP-representable.

Also works for e.g., monotone inclusion problems.

The approach can be used to obtain (tight) results for variety of "fixed-step" methods:

- (sub)gradient methods,

- (sub)gradient methods,
- inexact gradients methods,

- (sub)gradient methods,
- inexact gradients methods,
- proximal point methods,
- projected and proximal gradients methods,

- (sub)gradient methods,
- inexact gradients methods,
- proximal point methods,
- projected and proximal gradients methods,
- conditional gradient methods,
- splitting methods,
- randomized/stochastic gradient methods,
- distributed/decentralized gradient methods.

The approach can be used to obtain (tight) results for variety of "fixed-step" methods:

- (sub)gradient methods,
- inexact gradients methods,
- proximal point methods,
- projected and proximal gradients methods,
- conditional gradient methods,
- splitting methods,
- randomized/stochastic gradient methods,
- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach can be used to obtain (tight) results for variety of "fixed-step" methods:

- (sub)gradient methods,
- inexact gradients methods,
- proximal point methods,
- projected and proximal gradients methods,
- conditional gradient methods,
- splitting methods,
- randomized/stochastic gradient methods,
- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations.

Algorithms

The approach can be used to obtain (tight) results for variety of "fixed-step" methods:

- (sub)gradient methods,
- inexact gradients methods,
- proximal point methods,
- projected and proximal gradients methods,
- conditional gradient methods,
- splitting methods,
- randomized/stochastic gradient methods,
- distributed/decentralized gradient methods.

Those includes fast/accelerated variants.

The approach usually provides upper bounds (no a priori tightness) in other situations. In some settings, SDPs scale badly with problem parameters (e.g., stochastic settings).

Different convergence measures can be taken into account.

Among others:

Different convergence measures can be taken into account.

Among others:

- $f(x_N) - f(x_\star)$, $||x_N - x_\star||^2$, $||f'(x_N)||^2$,

Different convergence measures can be taken into account.

Among others:

- $f(x_N) f(x_\star)$, $||x_N x_\star||^2$, $||f'(x_N)||^2$,
- best iterates on the way:

$$\min_{0 \le i \le N} f(x_i) - f(x_\star), \quad \min_{0 \le i \le N} \|x_i - x_\star\|^2, \quad \min_{0 \le i \le N} \|f'(x_i)\|^2,$$

Different convergence measures can be taken into account.

Among others:

- $f(x_N) f(x_\star)$, $||x_N x_\star||^2$, $||f'(x_N)||^2$,
- best iterates on the way:

$$\min_{0 \le i \le N} f(x_i) - f(x_\star), \quad \min_{0 \le i \le N} \|x_i - x_\star\|^2, \quad \min_{0 \le i \le N} \|f'(x_i)\|^2,$$

- any concave function of f_i 's, $\langle x_i, g_j \rangle$'s, $\|g_i\|^2$'s and $\|x_i\|^2$'s.

Want to give it a try?

Want to give it a try?

Performance EStimation TOolbox (PESTO)

Want to give it a try?

Performance EStimation TOolbox (PESTO)

Purpose: automated worst-case analyses of first-order methods without worrying about modelling steps.

Minimize *L*-smooth convex function f(x):

 $\min_{x\in\mathbb{R}^d}f(x).$

Minimize *L*-smooth convex function f(x):

 $\min_{x\in\mathbb{R}^d}f(x).$

Fast Gradient Method (FGM) Input: $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$, $x_0 = y_0 \in \mathbb{R}^d$. For i = 0 : N - 1 $x_{i+1} = y_i - \frac{1}{L} \nabla f(y_i)$ $y_{i+1} = x_{i+1} + \frac{i-1}{i+2}(x_{i+1} - x_i)$

Minimize *L*-smooth convex function f(x):

 $\min_{x\in\mathbb{R}^d}f(x).$

Fast Gradient Method (FGM) Input: $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$, $x_0 = y_0 \in \mathbb{R}^d$. For i = 0 : N - 1 $x_{i+1} = y_i - \frac{1}{L} \nabla f(y_i)$ $y_{i+1} = x_{i+1} + \frac{i-1}{i+2}(x_{i+1} - x_i)$

What if inexact gradient used instead? Relative inaccuracy model:

 $\|\tilde{
abla}f(y_i) -
abla f(y_i)\| \leq \varepsilon \|
abla f(y_i)\|.$

Minimize *L*-smooth convex function f(x):

 $\min_{x\in\mathbb{R}^d}f(x).$

Fast Gradient Method (FGM) Input: $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$, $x_0 = y_0 \in \mathbb{R}^d$. For i = 0 : N - 1 $x_{i+1} = y_i - \frac{1}{L} \nabla f(y_i)$ $y_{i+1} = x_{i+1} + \frac{i-1}{i+2}(x_{i+1} - x_i)$

What if inexact gradient used instead? Relative inaccuracy model:

 $\|\widetilde{\nabla}\mathbf{f}(\mathbf{y}_i) - \nabla f(y_i)\| \leq \varepsilon \|\nabla f(y_i)\|.$

Minimize *L*-smooth convex function f(x):

 $\min_{x\in\mathbb{R}^d}f(x).$

Fast Gradient Method (FGM) Input: $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$, $x_0 = y_0 \in \mathbb{R}^d$. For i = 0 : N - 1 $x_{i+1} = y_i - \frac{1}{L} \widetilde{\nabla} \mathbf{f}(\mathbf{y}_i)$ $y_{i+1} = x_{i+1} + \frac{i-1}{i+2}(x_{i+1} - x_i)$

What if inexact gradient used instead? Relative inaccuracy model:

 $\|\widetilde{\nabla}\mathbf{f}(\mathbf{y}_i) - \nabla f(y_i)\| \leq \varepsilon \|\nabla f(y_i)\|.$

```
% (0) Initialize an empty PEP
P = pep();
```

% (1) Set up the	objective function
param.mu = 0;	% strong convexity parameter
param.L = 1;	% Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

```
% (2) Set up the starting point and initial condition

x0 = P.StartingPoint(); % x0 is some starting point

[xs, fs] = F.OptimalPoint(); % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition ||x0-xs||^2<= 1
```

```
% (3) Algorithm
N = 7: % number of iterations
```

```
x = cell(N=1,1); % we store the iterates in a cell for convenience
x(1) = x0;
y = x0;
eps = .1;
for i = 1:N
d = inexactsubgradient(y, F, eps);
x(i+1) = y - 1/param.L * d;
y = x(i+1) + (i-1)/(i+2) * (x(i+1) - x(i));
end
```

```
% (4) Set up the performance measure
[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)
P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)
```

```
% (5) Solve the PEP 
P.solve()
```

```
% (6) Evaluate the output
double(f - fs) % worst-case objective function accuracy
```

% (0) Initialize an empty PEP P = pep();

% (1) Set up the objective function param.mu = 0; % strong convexity parameter param.L = 1: % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

```
% (2) Set up the starting point and initial condition
  ×Θ
         = P.StartingPoint();
                                % x0 is some starting point
   [vs fs] = E OntimalPoint():
                                % vs is an ontimal point and fs=E(vs)
x\{1\} = x0:
      = x0:
ens = .1:
for i = 1:N
             = inexactsubgradient(y, F, eps);
    d
    x{i+1} = y - 1/param.L * d;
             = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});
    V
             end
  % (4) Set up the performance measure
  [q, f] = F, oracle(x{N+1}); % g=grad F(x), f=F(x)
  P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)
```

```
% (5) Solve the PEP 
P.solve()
```

```
% (6) Evaluate the output
double(f - fs) % worst-case objective function accuracy
```

% (0) Initialize an empty PEP P = pep();% (1) Set up the objective function param.mu = 0; % strong convexity parameter 05 param.L = 1: % Smoothness parameter * × 0.3 F=P.DeclareFunction('SmoothStronglyConvex', param); % F is the objective function 0.1 = 0.0% (2) Set up the starting point and initial condition (x_k) ×Θ = P.StartingPoint(); % x0 is some starting point [vs fs] = E OntimalPoint(): % vs is an ontimal point and fs=E(vs) $x\{1\} = x0;$ = x0;Iteration counter kens = .1: for i = 1:N= inexactsubgradient(y, F, eps); d $x{i+1} = y - 1/param.L * d;$ = $x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});$ V end % (4) Set up the performance measure [q, f] = F, oracle(x{N+1}); % g=grad F(x), f=F(x) P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs) % (5) Solve the PEP

P.solve()

% (6) Evaluate the output double(f - fs) % worst-case objective function accuracy

double(f - fs) % worst-case objective function accuracy

% (0) Initialize an empty PEP P = pep();% (1) Set up the objective function param.mu = 0; % strong convexity parameter 0 5 param.L = 1; % Smoothness parameter F=P.DeclareFunction('SmoothStronglyConvex', param); % F is the objective function = 0.0% (2) Set up the starting point and initial condition (x_k) ×Θ = P.StartingPoint(); % x0 is some starting point fsl = E OntimalPoint(): % vs is an ontimal point and fs=E(vs $x\{1\} = x0:$ = x0: Iteration counter kens = .1: for i = 1:N= inexactsubgradient(v, F, eps); d $x{i+1} = y - 1/param.L * d;$ $= x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});$ v + (1-1)/(1+2) * (X{1+1}) end % (4) Set up the performance measure \checkmark fast prototyping (~ 20 effective lines) [q, f] = F, oracle(x{N+1}); % g=grad F(x), f=F(x) P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs) \checkmark quick analyses (~ 10 minutes) % (5) Solve the PEP computer-aided proofs (multipliers) P.solve() % (6) Evaluate the output

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

 $\min_{x\in\mathbb{R}^d}f(x),$

with $f \in \mathcal{F}_{\mu,L}$ (*L*-smooth μ -strongly convex).

 $\min_{x\in\mathbb{R}^d}f(x),$

with $f \in \mathcal{F}_{\mu,L}$ (*L*-smooth μ -strongly convex).

Relative error model:

$$\|\nabla f(x_i) - d_i\| \le \varepsilon \|\nabla f(x_i)\| \quad i = 0, 1, \dots,$$
(1)

 $\min_{x\in\mathbb{R}^d}f(x),$

with $f \in \mathcal{F}_{\mu,L}$ (*L*-smooth μ -strongly convex).

Relative error model:

$$|\nabla f(x_i) - d_i|| \le \varepsilon \|\nabla f(x_i)\| \quad i = 0, 1, \dots,$$
(1)

```
Noisy gradient descent method with exact line search

Input: f \in \mathcal{F}_{\mu,L}(\mathbb{R}^n), x_0 \in \mathbb{R}^n, 0 \le \varepsilon < 1.

for i = 0, 1, ...

Select any seach direction d_i that satisfies (1);

\gamma = \operatorname{argmin}_{\gamma \in \mathbb{R}} f(x_i - \gamma d_i)

x_{i+1} = x_i - \gamma d_i
```

 $\min_{x\in\mathbb{R}^d}f(x),$

with $f \in \mathcal{F}_{\mu,L}$ (*L*-smooth μ -strongly convex).

Relative error model:

$$\|\nabla f(x_i) - d_i\| \le \varepsilon \|\nabla f(x_i)\| \quad i = 0, 1, \dots,$$
(1)

Noisy gradient descent method with exact line search Input: $f \in \mathcal{F}_{\mu,L}(\mathbb{R}^n)$, $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon < 1$. for i = 0, 1, ...Select any seach direction d_i that satisfies (1); $\gamma = \operatorname{argmin}_{\gamma \in \mathbb{R}} f(x_i - \gamma d_i)$ $x_{i+1} = x_i - \gamma d_i$

Worst-case behavior: (de Klerk, Glineur, T. 2017)

$$f(x_{i+1}) - f_* \leq \left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^2 (f(x_i) - f_*) \quad i = 0, 1, \dots$$

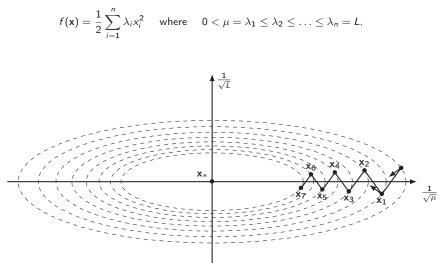
where $\kappa_{\varepsilon} = \frac{\mu}{L} \frac{(1-\varepsilon)}{(1+\varepsilon)}$.

Quadratic worst-case function:

-

$$f(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{n} \lambda_i x_i^2$$
 where $0 < \mu = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n = L$.

Quadratic worst-case function:



Aggregate the constraints

Aggregate the constraints

$$\begin{split} f_{0} &\geq f_{1} + \langle g_{1}, x_{0} - x_{1} \rangle + \frac{1}{2L} \|g_{0} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{0} - x_{1} - \left(g_{0} - g_{1}\right)/L\|^{2} \\ f_{\star} &\geq f_{0} + \langle g_{0}, x_{\star} - x_{0} \rangle + \frac{1}{2L} \|g_{\star} - g_{0}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{0} - \left(g_{\star} - g_{0}\right)/L\|^{2} \\ f_{\star} &\geq f_{1} + \langle g_{1}, x_{\star} - x_{1} \rangle + \frac{1}{2L} \|g_{\star} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{1} - \left(g_{\star} - g_{1}\right)/L\|^{2} \\ 0 &= \langle g_{0}, g_{1} \rangle \end{split}$$

$$0 = \langle g_1, x_1 - x_0 \rangle$$

Aggregate the constraints

$$\begin{split} f_{0} &\geq f_{1} + \langle g_{1}, x_{0} - x_{1} \rangle + \frac{1}{2L} \|g_{0} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{0} - x_{1} - \left(g_{0} - g_{1}\right)/L\|^{2} \\ f_{\star} &\geq f_{0} + \langle g_{0}, x_{\star} - x_{0} \rangle + \frac{1}{2L} \|g_{\star} - g_{0}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{0} - \left(g_{\star} - g_{0}\right)/L\|^{2} \\ f_{\star} &\geq f_{1} + \langle g_{1}, x_{\star} - x_{1} \rangle + \frac{1}{2L} \|g_{\star} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{1} - \left(g_{\star} - g_{1}\right)/L\|^{2} \\ 0 &= \langle g_{0}, g_{1} \rangle \\ 0 &= \langle g_{1}, x_{1} - x_{0} \rangle \end{split}$$

with multipliers

Aggregate the constraints

$$\begin{split} f_{0} &\geq f_{1} + \langle g_{1}, x_{0} - x_{1} \rangle + \frac{1}{2L} \|g_{0} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{0} - x_{1} - \left(g_{0} - g_{1}\right)/L\|^{2} \\ f_{\star} &\geq f_{0} + \langle g_{0}, x_{\star} - x_{0} \rangle + \frac{1}{2L} \|g_{\star} - g_{0}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{0} - \left(g_{\star} - g_{0}\right)/L\|^{2} \\ f_{\star} &\geq f_{1} + \langle g_{1}, x_{\star} - x_{1} \rangle + \frac{1}{2L} \|g_{\star} - g_{1}\|^{2} + \frac{\mu}{2\left(1 - \frac{\mu}{L}\right)} \|x_{\star} - x_{1} - \left(g_{\star} - g_{1}\right)/L\|^{2} \\ 0 &= \langle g_{0}, g_{1} \rangle \\ 0 &= \langle g_{1}, x_{1} - x_{0} \rangle \end{split}$$

with multipliers

$$y_1 = \frac{L-\mu}{L+\mu}, \quad y_2 = 2\mu \frac{(L-\mu)}{(L+\mu)^2}, \quad y_3 = \frac{2\mu}{L+\mu}, \quad y_4 = \frac{2}{L+\mu}, \quad y_5 = 1.$$

Resulting inequality:

$$\begin{split} f_1 - f_{\star} &\leq \left(\frac{L-\mu}{L+\mu}\right)^2 \left(f_0 - f_{\star}\right) \\ &\quad - \frac{\mu L (L+3\mu)}{2(L+\mu)^2} \left\| x_0 - \frac{L+\mu}{L+3\mu} x_1 - \frac{2\mu}{L+3\mu} x_{\star} - \frac{3L+\mu}{L^2+3\mu L} g_0 - \frac{L+\mu}{L^2+3\mu L} g_1 \right\|^2 \\ &\quad - \frac{2L\mu^2}{L^2+2L\mu-3\mu^2} \left\| x_1 - x_{\star} - \frac{(L-\mu)^2}{2\mu L (L+\mu)} g_0 - \frac{L+\mu}{2\mu L} g_1 \right\|^2. \end{split}$$

Resulting inequality:

$$\begin{split} f_1 - f_{\star} &\leq \left(\frac{L-\mu}{L+\mu}\right)^2 \left(f_0 - f_{\star}\right) \\ &\quad - \frac{\mu L (L+3\mu)}{2(L+\mu)^2} \left\| x_0 - \frac{L+\mu}{L+3\mu} x_1 - \frac{2\mu}{L+3\mu} x_{\star} - \frac{3L+\mu}{L^2+3\mu L} g_0 - \frac{L+\mu}{L^2+3\mu L} g_1 \right\|^2 \\ &\quad - \frac{2L\mu^2}{L^2+2L\mu-3\mu^2} \left\| x_1 - x_{\star} - \frac{(L-\mu)^2}{2\mu L (L+\mu)} g_0 - \frac{L+\mu}{2\mu L} g_1 \right\|^2. \end{split}$$

Last two terms nonpositive, so

$$f_1 - f_\star \leq \left(\frac{L-\mu}{L+\mu}\right)^2 (f_0 - f_\star).$$

Resulting inequality:

$$\begin{split} f_1 - f_{\star} &\leq \left(\frac{L-\mu}{L+\mu}\right)^2 \left(f_0 - f_{\star}\right) \\ &\quad - \frac{\mu L (L+3\mu)}{2(L+\mu)^2} \left\| x_0 - \frac{L+\mu}{L+3\mu} x_1 - \frac{2\mu}{L+3\mu} x_{\star} - \frac{3L+\mu}{L^2+3\mu L} g_0 - \frac{L+\mu}{L^2+3\mu L} g_1 \right\|^2 \\ &\quad - \frac{2L\mu^2}{L^2+2L\mu-3\mu^2} \left\| x_1 - x_{\star} - \frac{(L-\mu)^2}{2\mu L (L+\mu)} g_0 - \frac{L+\mu}{2\mu L} g_1 \right\|^2. \end{split}$$

Last two terms nonpositive, so

$$f_1 - f_\star \leq \left(\frac{L-\mu}{L+\mu}\right)^2 (f_0 - f_\star).$$

One actually has equality at optimality, due to the quadratic example.

Smooth convex minimization setting:

 $\min_{x\in\mathbb{R}^d}f(x)$

with f being L-smooth and convex, with black-box oracle f'(.) available.

Smooth convex minimization setting:

 $\min_{x\in\mathbb{R}^d}f(x)$

with f being L-smooth and convex, with black-box oracle f'(.) available.

Lower bound for large-scale setting $(d \ge N + 2)$ by Drori (2017):

$$f(x_N) - f(x_\star) \ge \frac{L \|x_0 - x_\star\|^2}{2\theta_N^2}$$

with $\theta_0 = 1$, and:

$$\theta_{i+1} = \begin{cases} \frac{1+\sqrt{4\theta_i^2+1}}{2} & \text{if } i \le N-2, \\ \frac{1+\sqrt{8\theta_i^2+1}}{2} & \text{if } i = N-1. \end{cases}$$

Smooth convex minimization setting:

 $\min_{x\in\mathbb{R}^d}f(x)$

with f being L-smooth and convex, with black-box oracle f'(.) available.

Lower bound for large-scale setting $(d \ge N + 2)$ by Drori (2017):

$$f(x_N) - f(x_\star) \ge \frac{L ||x_0 - x_\star||^2}{2\theta_N^2} = O(N^{-2})$$

with $\theta_0 = 1$, and:

$$\theta_{i+1} = \begin{cases} \frac{1+\sqrt{4\theta_i^2+1}}{2} & \text{if } i \le N-2, \\ \frac{1+\sqrt{8\theta_i^2+1}}{2} & \text{if } i = N-1. \end{cases}$$

Smooth convex minimization setting:

 $\min_{x\in\mathbb{R}^d}f(x)$

with f being L-smooth and convex, with black-box oracle f'(.) available.

Lower bound for large-scale setting $(d \ge N + 2)$ by Drori (2017):

$$f(x_N) - f(x_\star) \ge \frac{L ||x_0 - x_\star||^2}{2\theta_N^2} = O(N^{-2})$$

with $\theta_0 = 1$, and:

$$\theta_{i+1} = \begin{cases} \frac{1+\sqrt{4\theta_i^2+1}}{2} & \text{if } i \le N-2, \\ \frac{1+\sqrt{8\theta_i^2+1}}{2} & \text{if } i = N-1. \end{cases}$$

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal methods (Nemirovski 1982), (Nesterov 1983).

Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM) Inputs: f, x_0, N . For i = 1, 2, ... $x_i = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(x) : x \in x_0 + \operatorname{span}\{f'(x_0), \dots, f'(x_{i-1})\} \right\}.$

Worst-case guarantee:

$$f(x_N) - f(x_\star) \le rac{L \|x_0 - x_\star\|^2}{2\theta_N^2}$$

See (Drori & T. 2018).

Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs:
$$f, x_0, N$$
.
For $i = 1, ..., N$
 $y_i = \left(1 - \frac{1}{\theta_i}\right) x_{i-1} + \frac{1}{\theta_i} x_0$
 $d_i = \left(1 - \frac{1}{\theta_i}\right) f'(x_{i-1}) + \frac{1}{\theta_i} \left(2\sum_{j=0}^{i-1} \theta_j f'(x_j)\right)$
 $\alpha = \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f(y_i + \alpha d_i)$
 $x_i = y_i + \alpha d_i$

Worst-case guarantee:

$$f(x_N) - f(x_\star) \le \frac{L \|x_0 - x_\star\|^2}{2\theta_N^2}.$$

See (Drori & T. 2018).

Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs:
$$f, x_0, N$$
.
For $i = 1, ..., N$
 $y_i = x_{i-1} - \frac{1}{L}f'(x_{i-1})$
 $z_i = x_0 - \frac{2}{L}\sum_{j=0}^{i-1} \theta_j f'(x_j)$
 $x_i = \left(1 - \frac{1}{\theta_i}\right)y_i + \frac{1}{\theta_i}z_i$

Worst-case guarantee:

$$f(x_N) - f(x_\star) \leq \frac{L ||x_0 - x_\star||^2}{2\theta_N^2}.$$

See (Drori & Teboulle 2014), (Kim & Fessler 2016), (Drori & T. 2018).

Warning for the next few slides:

 $\diamond~$ the expressions are horrible,

- ◊ the expressions are horrible,
- ◊ barely obtainable by hand,

- ◊ the expressions are horrible,
- ◊ barely obtainable by hand,
- computer-generated (Mathematica or Matlab),

- ◊ the expressions are horrible,
- ◊ barely obtainable by hand,
- computer-generated (Mathematica or Matlab),
- ◊ verifiable by hand (possibly long algebraic proofs).

Warning for the next few slides:

- ◊ the expressions are horrible,
- ◊ barely obtainable by hand,
- computer-generated (Mathematica or Matlab),
- ◊ verifiable by hand (possibly long algebraic proofs).

Intuitions can be developed, but this is another story $\ensuremath{\textcircled{}}$

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Reformulate problem via fixed-point of some $\mathcal{T}: \mathbb{R}^d \to \mathbb{R}^d$. One particular choice:

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Reformulate problem via fixed-point of some $T : \mathbb{R}^d \to \mathbb{R}^d$. One particular choice:

♦ let $J_A = (I + A)^{-1}$ and $J_B = (I + B)^{-1}$ being resolvents of A and B,

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Reformulate problem via fixed-point of some $T : \mathbb{R}^d \to \mathbb{R}^d$. One particular choice:

- ♦ let $J_A = (I + A)^{-1}$ and $J_B = (I + B)^{-1}$ being resolvents of A and B,
- ♦ let $T = I \theta J_B + \theta J_A (2J_B I)$ (overrelaxed Douglas-Rachford operator).

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Reformulate problem via fixed-point of some $T : \mathbb{R}^d \to \mathbb{R}^d$. One particular choice:

- ♦ let $J_A = (I + A)^{-1}$ and $J_B = (I + B)^{-1}$ being resolvents of A and B,
- ♦ let $T = I \theta J_B + \theta J_A (2J_B I)$ (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

 $\min_{x\in\mathbb{R}^d}f(x)+h(x),$

Let $A : \mathbb{R}^d \to 2^{\mathbb{R}^d}$, $B : \mathbb{R}^d \to 2^{\mathbb{R}^d}$ (point-to-set maps) be maximally monotone; find $0 \in A(x) + B(x)$.

Examples: $A(x) = \partial f(x)$ and $B(x) = \partial h(x)$ for two convex functions f and h.

Reformulate problem via fixed-point of some $T : \mathbb{R}^d \to \mathbb{R}^d$. One particular choice:

- \diamond let $J_A = (I + A)^{-1}$ and $J_B = (I + B)^{-1}$ being resolvents of A and B,
- ♦ let $T = I \theta J_B + \theta J_A (2J_B I)$ (overrelaxed Douglas-Rachford operator).

Example: Douglas-Rachford for solving

$$\min_{x\in\mathbb{R}^d}f(x)+h(x),$$

amount to iterate:

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_{x \in \mathbb{R}^d} \{ h(x) + \frac{1}{2} \| x - w_k \|^2 \} \\ y_{k+1} &= \operatorname{argmin}_{y \in \mathbb{R}^d} \{ f(y) + \frac{1}{2} \| y - 2x_{k+1} + w_k \|^2 \} \\ w_{k+1} &= w_k + \theta(y_{k+1} - x_{k+1}) \end{aligned}$$

Question: When is this T a contraction? What is the smallest ρ such that

$$\|Tx - Ty\| \le \rho \|x - y\|,$$

for all $x, y \in \mathbb{R}^d$?

Question: When is this T a contraction? What is the smallest ρ such that

$$\|Tx - Ty\| \le \rho \|x - y\|,$$

for all $x, y \in \mathbb{R}^d$?

Related previous works:

(Douglas & Rachford 1956), (Lions & Mercier 1979), (Giselsson & Boyd 2017), (Giselsson 2017), (Davis & Yin 2017), (Moursi & Vandenberghe 2018), and many others; gentle introduction to monotone operators (Ryu & Boyd 2016).

Assumptions: A μ -strongly monotone, B β -cocoercive.

Assumptions: A μ -strongly monotone, B β -cocoercive.

Assumptions: A μ -strongly monotone, B β -cocoercive.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

 $\rho =$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \begin{cases} |\mathbf{1} - \theta \frac{\beta}{\beta + \mathbf{1}}| & \text{if } \mu\beta - \mu + \beta < \mathbf{0}, \text{ and } \theta \leq 2 \frac{(\beta + \mathbf{1})(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \end{cases}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta+1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta+1)(\mu-\beta-\mu\beta)}{\mu+\mu\beta-\beta-2-2\mu\beta^2}, \\ |1 - \theta \frac{1+\mu\beta}{(\mu+1)(\beta+1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2+\beta^2+\mu^2\beta+\mu+\beta-\mu^2\beta^2}{\mu^2+\beta^2+\mu^2\beta+\mu\beta^2+\mu+\beta-2\mu^2\beta^2}, \end{cases}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \left\{ \begin{array}{ll} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - 2\mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \end{array} \right.$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \left\{ \begin{array}{ll} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta + \mu + \beta - \mu^2\beta^2}{\mu^2 + \beta^2 + \mu\beta^2 + \mu$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta+1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta+1)(\mu-\beta-\mu\beta)}{\mu+\mu\beta-\beta^2-2\mu\beta^2}, \\ |1 - \theta \frac{1+\mu\beta}{(\mu+1)(\beta+1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2+\beta^2+\mu^2\beta+\mu+\beta-\mu^2\beta^2}{\mu^2+\beta^2+\mu^2\beta+\mu\beta^2+\mu+\beta-2\mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2\frac{\mu\beta+\mu+\beta}{2\mu\beta+\mu+\beta}, \\ |1 - \theta \frac{\mu}{\mu+1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2\frac{(\mu+1)(\beta-\mu-\mu\beta)}{\beta+\mu\beta-\mu-\mu^2-2\mu^2\beta}, \\ X & \text{otherwise,} \end{cases}$$

Assumptions: A μ -strongly monotone, B β -cocoercive.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} |1 - \theta \frac{\beta}{\beta + 1}| & \text{if } \mu\beta - \mu + \beta < 0, \text{ and } \theta \le 2\frac{(\beta + 1)(\mu - \beta - \mu\beta)}{\mu + \mu\beta - \beta^2 - 2\mu\beta^2}, \\ |1 - \theta \frac{1 + \mu\beta}{(\mu + 1)(\beta + 1)}| & \text{if } \mu\beta - \mu - \beta > 0, \text{ and } \theta \le 2\frac{\mu^2 + \beta^2 + \mu\beta^2 + \mu^2\beta - \mu\beta^2}{\mu^2 + \beta^2 + \mu^2\beta + \mu\beta^2 + \mu\beta - 2\mu^2\beta^2}, \\ |1 - \theta| & \text{if } \theta \ge 2\frac{\mu\beta + \mu + \beta}{2\mu\beta + \mu + \beta}, \\ |1 - \theta \frac{\mu}{\mu + 1}| & \text{if } \mu\beta + \mu - \beta < 0, \text{ and } \theta \le 2\frac{(\mu + 1)(\beta - \mu - \mu\beta)}{\beta + \mu\beta - \mu - \mu^2 - 2\mu^2\beta}, \\ X & \text{otherwise,} \end{cases}$$

with

$$X = \frac{\sqrt{2-\theta}}{2} \sqrt{\frac{((2-\theta)\mu(\beta+1)-\theta\beta(\mu-1))\left((2-\theta)\beta(\mu+1)-\theta\mu(\beta-1)\right)}{(2-\theta)\mu\beta(\mu+1)(\beta+1)-\theta\mu^2\beta^2}}$$

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

Assumptions: A μ -strongly monotone, B L-Lipschitz and monotone.

We have $||Tx - Ty|| \le \rho ||x - y||$ for all $x, y \in \mathcal{H}$ with:

$$\rho = \begin{cases} \frac{\theta + \sqrt{\frac{(2(\theta - 1)\mu + \theta - 2)^2 + l^2(\theta - 2(\mu + 1))^2}{l^2 + 1}} & \text{if } (a), \\ \frac{l^2 + 1}{2(\mu + 1)} & \text{if } (b), \end{cases}$$

$$\begin{pmatrix} |1 - \theta \frac{1}{(\mu+1)(l+1)}| & \text{if } (b), \\ \sqrt{\frac{(2-\theta)}{4\mu(l^2+1)}} \frac{\left(\theta(l^2+1) - 2\mu(\theta+l^2-1)\right) \left(\theta \left(1+2\mu+l^2\right) - 2(\mu+1)\left(l^2+1\right)\right)}{2\mu(\theta+l^2-1) - (2-\theta)(1-l^2)} & \text{otherwise} \end{cases}$$

with

(a)
$$\mu \frac{-(2(\theta-1)\mu+\theta-2)+L^2(\theta-2(1+\mu))}{\sqrt{(2(\theta-1)\mu+\theta-2)^2+L^2(\theta-2(\mu+1))^2}} \leq \sqrt{L^2+1},$$

(b) $L < 1, \ \mu > \frac{L^2+1}{(L-1)^2}, \ \text{and} \ \theta \leq \frac{2(\mu+1)(L+1)(\mu+\mu L^2-L^2-2\mu L-1)}{2\mu^2-\mu+\mu L^3-L^3-3\mu L^2-L^2-2\mu^2 L-\mu L-L-1}.$

Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

Smooth strongly convex interpolation

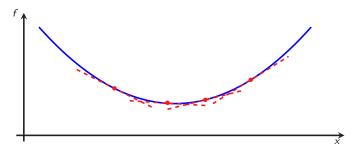
Consider a set S, and its associated values $\{(x_i, g_i, f_i)\}_{i \in S}$ with coordinates x_i , subgradients g_i and function values f_i .

? Possible to find a $f \in \mathcal{F}_{\mu,L}$ s.t.

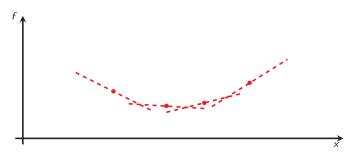
 $f(x_i) = f_i$, and $g_i \in \partial f(x_i)$, $\forall i \in S$.

Conditions for $\{(x_i, g_i, f_i)\}_{i \in S}$ to be interpolable by a function $f \in \mathcal{F}_{0,\infty}$ (proper, closed and convex function)?

Conditions for $\{(x_i, g_i, f_i)\}_{i \in S}$ to be interpolable by a function $f \in \mathcal{F}_{0,\infty}$ (proper, closed and convex function)?

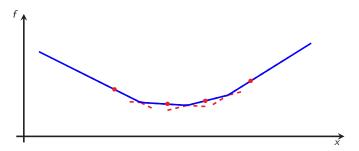


Conditions for $\{(x_i, g_i, f_i)\}_{i \in S}$ to be interpolable by a function $f \in \mathcal{F}_{0,\infty}$ (proper, closed and convex function)?



Conditions $f_i \ge f_j + \langle g_j, x_i - x_j \rangle$ is nec.

Conditions for $\{(x_i, g_i, f_i)\}_{i \in S}$ to be interpolable by a function $f \in \mathcal{F}_{0,\infty}$ (proper, closed and convex function)?



Conditions $f_i \ge f_j + \langle g_j, x_i - x_j \rangle$ is nec. and suff.

Explicit construction:

$$f(x) = \max_{j} \left\{ f_{j} + \left\langle g_{j}, x - x_{j} \right\rangle \right\},\,$$

Not unique.

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function $f \in \mathcal{F}_{0,L}$ (proper, closed and convex function with *L*-Lipschitz gradient).

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function $f \in \mathcal{F}_{0,L}$ (proper, closed and convex function with *L*-Lipschitz gradient).

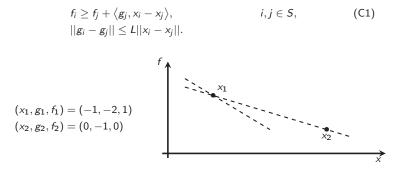
Counter-example 1: what about the conditions:

$$\begin{aligned} f_i \geq f_j + \left\langle g_j, x_i - x_j \right\rangle, & i, j \in S, \\ ||g_i - g_j|| \leq L ||x_i - x_j||. \end{aligned} \tag{C1}$$

Smooth convex interpolation

Generalization to smooth interpolation ? Interpolation by a function $f \in \mathcal{F}_{0,L}$ (proper, closed and convex function with *L*-Lipschitz gradient).

Counter-example 1: what about the conditions:



satisfies (C1) but cannot be differentiable...

An approach to smooth convex interpolation

Idea: reduce smooth convex interpolation to convex interpolation.

Basic operations needed in order to transform the problem:

- Conjugation: f is closed, proper and convex, then: f *L*-Lipschitz gradient $\Leftrightarrow f^* \frac{1}{l}$ -strongly convex.
- Minimal curvature subtraction: $f(x) \mu$ -strongly convex $\Leftrightarrow f(x) - \frac{\mu}{2} ||x||^2$ convex.

Conjugation (1): Definition

Consider a proper function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$, the (Legendre-Fenchel) conjugate of f is defined as:

$$f^*(y) = \sup_{x \in \mathbb{R}^d} \langle y, x \rangle - f(x),$$

with $f^* \in \mathcal{F}_{0,\infty}$ (proper, closed and convex).

Conjugation (2): Useful properties

For $f \in \mathcal{F}_{0,\infty}$, we have a one-to-one correspondence between f and f^* , and the following propositions are equivalent:

- (a) $f(x) + f^*(g) = \langle g, x \rangle$,
- (b) $g \in \partial f(x)$,
- (c) $x \in \partial f^*(g)$.

Conjugation (2): Useful properties

For $f \in \mathcal{F}_{0,\infty}$, we have a one-to-one correspondence between f and f^* , and the following propositions are equivalent:

(a)
$$f(x) + f^*(g) = \langle g, x \rangle$$
,

(b)
$$g \in \partial f(x)$$
,

(c) $x \in \partial f^*(g)$.

For $f \in \mathcal{F}_{0,\infty}$, we have: $f \in \mathcal{F}_{0,L} \Leftrightarrow f^* \in \mathcal{F}_{1/L,\infty}$.

Conjugation (2): Useful properties

For $f \in \mathcal{F}_{0,\infty}$, we have a one-to-one correspondence between f and f^* , and the following propositions are equivalent:

- (a) $f(x) + f^*(g) = \langle g, x \rangle$, (b) $g \in \partial f(x)$,
- (c) $x \in \partial f^*(g)$.

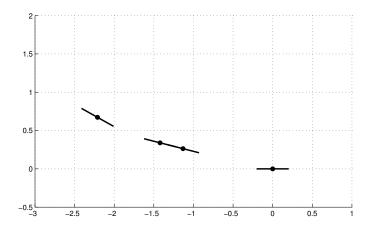
For $f \in \mathcal{F}_{0,\infty}$, we have: $f \in \mathcal{F}_{0,L} \Leftrightarrow f^* \in \mathcal{F}_{1/L,\infty}$.

Intuition:

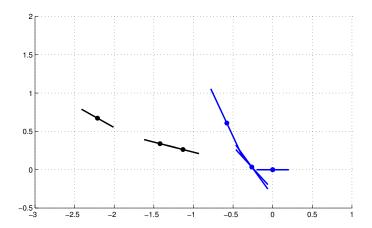
 \diamond upper bounds become lower bounds; let $f, u \in \mathcal{F}_{0,\infty}$, we have:

 $f(x) \leq u(x)$ for all $x \in \mathbb{R}^d \Leftrightarrow u^*(g) \leq f^*(g)$ for all $g \in \mathbb{R}^d$.

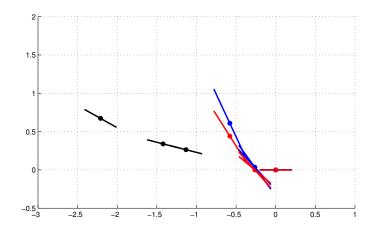
◊ Conjugate of quadratics are quadratics.



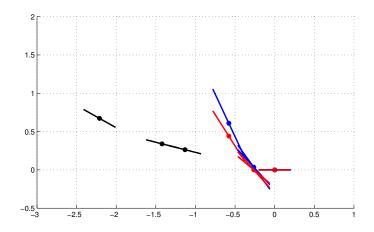
Interpolate $\{(x_i, g_i, f_i)\}_{i \in S}$ by $f \in \mathcal{F}_{0,L}$



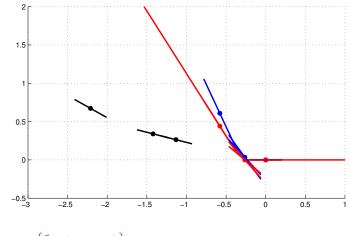
 $\Leftrightarrow \text{ interpolate } \{(g_i, x_i, \langle x_i, g_i \rangle - f_i)\}_{i \in S} \text{ by } f^* \in \mathcal{F}_{1/L,\infty}.$



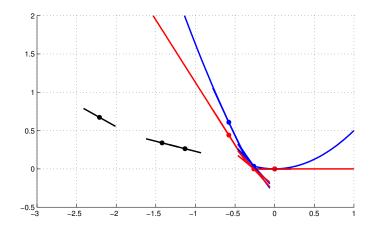
 $\Leftrightarrow \text{ interpolate } \left\{ \left(g_i, x_i - \frac{g_i}{L}, \langle x_i, g_i \rangle - f_i - \frac{\|g_i\|^2}{2L} \right) \right\}_{i \in S} \text{ by } \tilde{f} \in \mathcal{F}_{0,\infty}.$



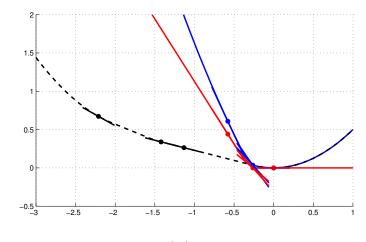
 $\Leftrightarrow \text{ interpolate } \left\{ \left(\tilde{x}_i, \tilde{g}_i, \tilde{f}_i \right) \right\}_{i \in S} \text{ by } \tilde{f} \in \mathcal{F}_{0,\infty}.$



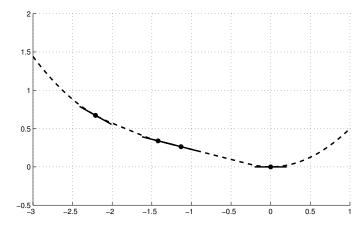
 $ilde{f}(x) = \max_{j} \left\{ ilde{f}_{j} + \left\langle ilde{g}_{j}, x - ilde{x}_{j}
ight
angle
ight\}$



 $f^*(x) = \max_j \left\{ ilde{f_j} + \left< ilde{g_j}, x - ilde{x_j} \right>
ight\} + rac{\|x\|^2}{2L}$



 $f(x) = \left(\max_{j}\left\{\tilde{f}_{j} + \left\langle \tilde{g}_{j}, x - \tilde{x}_{j} \right\rangle\right\} + \frac{\|x\|^{2}}{2L}\right)^{*}$



 $f(x) = \left(\max_{j}\left\{\tilde{f}_{j} + \left\langle \tilde{g}_{j}, x - \tilde{x}_{j} \right\rangle\right\} + \frac{\|x\|^{2}}{2L}\right)^{*}$

Conclusion: iff conditions

Using the same reasoning:

The set $\{(x_i, g_i, f_i)\}_{i \in S}$ is interpolable by a function $f \in \mathcal{F}_{\mu,L}$ (proper, closed, μ -strongly convex with *L*-Lipschitz gradient) iff:

$$egin{aligned} f_i - f_j - \left\langle g_j, x_i - x_j
ight
angle &\geq & rac{1}{2(1-\mu/L)} \left(rac{1}{L} \| g_i - g_j \|^2 \ &+ \mu \| x_i - x_j \|^2 - 2 rac{\mu}{L} \left\langle g_j - g_i, x_j - x_i
ight
angle
ight). \end{aligned}$$

When $\mu = 0$, those conditions transforms to the well-known

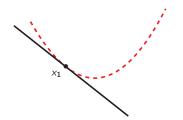
$$f_j \geq f_i + \langle g_i, x_j - x_i \rangle + \frac{1}{2L} \|g_i - g_j\|^2 \quad \forall i, j \in S.$$

Interpretation: compatible upper and lower bounds

Smooth convex interpolation conditions

$$f_j \ge f_i + \langle g_i, x_j - x_i \rangle + rac{1}{2L} \|g_i - g_j\|^2 \qquad orall i, j \in S$$

characterize compatibility between upper and lower bounds.

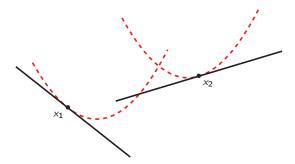


Interpretation: compatible upper and lower bounds

Smooth convex interpolation conditions

$$f_j \ge f_i + \langle g_i, x_j - x_i \rangle + rac{1}{2L} \|g_i - g_j\|^2 \qquad orall i, j \in S$$

characterize compatibility between upper and lower bounds.



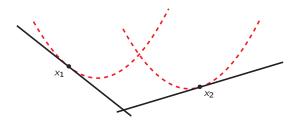
 x_1 and x_2 are not compatible.

Interpretation: compatible upper and lower bounds

Smooth convex interpolation conditions

$$f_j \geq f_i + \left\langle g_i, x_j - x_i \right\rangle + rac{1}{2L} \left\| g_i - g_j \right\|^2 \qquad orall i, j \in S$$

characterize compatibility between upper and lower bounds.

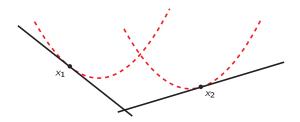


 x_1 and x_2 are compatible.

Interpretation: convex hull of upper bounds

Smooth convex interpolation conditions

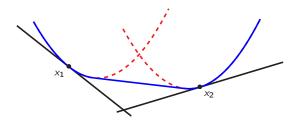
$$f_j \geq f_i + \left\langle g_i, x_j - x_i
ight
angle + rac{1}{2L} \left\| g_i - g_j
ight\|^2 \qquad orall i, j \in S$$



Interpretation: convex hull of upper bounds

Smooth convex interpolation conditions

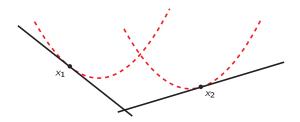
$$f_j \geq f_i + \left\langle g_i, x_j - x_i
ight
angle + rac{1}{2L} \left\| g_i - g_j
ight\|^2 \qquad orall i, j \in S$$



Interpretation: smoothed lower bounds

Smooth convex interpolation conditions

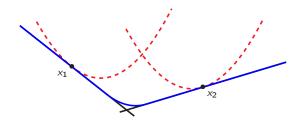
$$f_j \geq f_i + \left\langle g_i, x_j - x_i
ight
angle + rac{1}{2L} \left\| g_i - g_j
ight\|^2 \qquad orall i, j \in S$$



Interpretation: smoothed lower bounds

Smooth convex interpolation conditions

$$f_j \geq f_i + \left\langle g_i, x_j - x_i
ight
angle + rac{1}{2L} \left\| g_i - g_j
ight\|^2 \qquad orall i, j \in S$$



Toy example

Performance estimation

Further examples

Convex interpolation

Conclusions and discussions

Pros/cons of PEPs

Pros/cons of PEPs

③ Worst-case guarantees cannot be improved,

details in (T, Hendrickx & Glineur 2017),

Pros/cons of PEPs

^(C) Worst-case guarantees cannot be improved,

details in (T, Hendrickx & Glineur 2017),

 $\textcircled{\ensuremath{\textcircled{}}}$ fair amount of generalizations (finite sums, constraints, prox, etc.),

details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.

Pros/cons of PEPs

Worst-case guarantees cannot be improved,

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),

Pros/cons of PEPs

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit,

Pros/cons of PEPs

Worst-case guarantees cannot be improved,

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit, examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi & Liu 2017), (de Klerk et al. 2017), etc.

Pros/cons of PEPs

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit, examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi & Liu 2017), (de Klerk et al. 2017), etc.
- proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

Pros/cons of PEPs

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit, examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi & Liu 2017), (de Klerk et al. 2017), etc.
- proofs (may be) hard to generalize (e.g., to handle projections, backtracking), examples in (Kim & Fessler 2016 2018).

Pros/cons of PEPs

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit, examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi & Liu 2017), (de Klerk et al. 2017), etc.
- proofs (may be) hard to generalize (e.g., to handle projections, backtracking), examples in (Kim & Fessler 2016 2018).
- allows reaching proofs that could barely be obtained by hand,

Pros/cons of PEPs

details in (T, Hendrickx & Glineur 2017),

- fair amount of generalizations (finite sums, constraints, prox, etc.), details in (T, Hendrickx & Glineur 2017); (Drori 2014), etc.
- SDPs typically become prohibitively large (with N and generalizations),
- proofs (may be) quite involved and hard to intuit, examples in (Drori & Teboulle 2014), (Drori 2014), (Kim & Fessler 2016 2018), (Shi & Liu 2017), (de Klerk et al. 2017), etc.
- proofs (may be) hard to generalize (e.g., to handle projections, backtracking), examples in (Kim & Fessler 2016 2018).
- allows reaching proofs that could barely be obtained by hand,
- easy to try via Performance EStimation TOolbox (PESTO).

Concluding remarks

Performance estimation's philosophy

Concluding remarks

Performance estimation's philosophy

numerically allows to obtain tight bounds (rigorous baselines),

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

- ◊ Second-order methods?
- Interpolation and formulations with non-Euclidean geometries?
- $\diamond~$ How to generically end up with optimal schemes and lower-bounds?
- ◊ Beyond worst-case analyses?
- ◊ And many others...

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

- ◊ Second-order methods?
- Interpolation and formulations with non-Euclidean geometries?
- $\diamond~$ How to generically end up with optimal schemes and lower-bounds?
- ◊ Beyond worst-case analyses?
- ♦ And many others...

Three recent works:

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

- ◊ Second-order methods?
- Interpolation and formulations with non-Euclidean geometries?
- How to generically end up with optimal schemes and lower-bounds?
- ◊ Beyond worst-case analyses?
- ♦ And many others...

Three recent works:

 "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions" (COLT 2019, with F. Bach),

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

- ◊ Second-order methods?
- Interpolation and formulations with non-Euclidean geometries?
- How to generically end up with optimal schemes and lower-bounds?
- ◊ Beyond worst-case analyses?
- ♦ And many others...

Three recent works:

- "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions" (COLT 2019, with F. Bach),
- "Operator Splitting Performance Estimation: Tight contraction factors and optimal parameter selection" (2018, with E. Ryu, C. Bergeling and P. Giselsson),

Performance estimation's philosophy

- numerically allows to obtain tight bounds (rigorous baselines),
- ♦ helps designing analytical proofs (reduces to linear combinations of inequalities),
- ◊ fast prototyping:

before trying to prove your crazy-algorithm works; give PEP a try!

Open questions:

- ◊ Second-order methods?
- Interpolation and formulations with non-Euclidean geometries?
- How to generically end up with optimal schemes and lower-bounds?
- ◊ Beyond worst-case analyses?
- ♦ And many others...

Three recent works:

- "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions" (COLT 2019, with F. Bach),
- "Operator Splitting Performance Estimation: Tight contraction factors and optimal parameter selection" (2018, with E. Ryu, C. Bergeling and P. Giselsson),
- "Efficient first-order methods for convex minimization: a constructive approach" (MP 2019, with Y. Drori).

Take-home messages

Worst-cases are solutions to optimization problems.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Take-home messages

Worst-cases are solutions to optimization problems.

Sometimes, those optimization problems are tractable.

Often tractable for first-order methods in convex optimization!

Thanks! Questions?

www.di.ens.fr/ \sim ataylor/

AdrienTaylor/Performance-Estimation-Toolbox on Github

References I

- N. Bansal and A. Gupta. Potential-function proofs for first-order methods. preprint arXiv:1712.04581, 2017.
- [2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
- [3] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications. Set-Valued and Variational Analysis, 25(4):829–858, 2017.
- [4] E. de Klerk, F. Glineur, and A. B. Taylor. On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions. *Optimization Letters*, 11(7):1185–1199, 2017.
- [5] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two and three space variables. *Transactions of the American Mathematical Society*, 82:421–439, 1956.
 - Y. Drori. Contributions to the Complexity Analysis of Optimization Algorithms. PhD thesis, Tel-Aviv University, 2014.
- [7] Y. Drori.

[6]

The exact information-based complexity of smooth convex minimization. *Journal of Complexity*, 39:1–16, 2017.

References II

[8] Y. Drori and A. B. Taylor.

Efficient first-order methods for convex minimization: a constructive approach. *Mathematical Programming (to appear)*, 2019.

[9] Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach. *Mathematical Programming*, 145(1-2):451-482, 2014.

[10] P. Giselsson.

Tight global linear convergence rate bounds for Douglas-Rachford splitting. *Journal of Fixed Point Theory and Applications*, 19(4):2241–2270, 2017.

[11] P. Giselsson and S. Boyd.

Diagonal scaling in Douglas-Rachford splitting and ADMM. In 53rd IEEE Conference on Decision and Control, pages 5033–5039, Los Angeles, CA, Dec. 2014.

- [12] P. Giselsson and S. Boyd. Linear convergence and metric selection for Douglas-Rachford splitting and ADMM. IEEE Transactions on Automatic Control, 62(2):532–544, 2017.
- [13] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization. *Mathematical Programming*, 159(1-2):81–107, 2016.

[14] D. Kim and J. A. Fessler. Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions.

preprint arXiv:1803.06600, 2018.

References III

[15] L. Lessard, B. Recht, and A. Packard.

Analysis and design of optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

- [16] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.
- [17] W. M. Moursi and L. Vandenberghe. Douglas-Rachford splitting for a Lipschitz continuous and a strongly monotone operator. arXiv preprint arXiv:1805.09396, 2018.
- [18] A. S. Nemirovski. Orth-method for smooth convex optimization. Izvestia AN SSSR, Tekhnicheskaya Kibernetika, 2:937–947, 1982.
- [19] A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Willey-Interscience, New York, 1983.
- [20] Y. Nesterov.

A method of solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Mathematics Doklady, 27:372–376, 1983.

[21] Y. Nesterov.

Introductory Lectures on Convex Optimization : a Basic Course. Applied optimization. Kluwer Academic Publishing, 2004.

References IV

[22] Y. Nesterov.

Lectures on Convex Optimization. Springer Optimization and Its Applications, Springer International Publishing, 2018,

- [23] E. K. Ryu and S. Boyd. Primer on monotone operator methods. Appl. Comput. Math., 15:3-43, 2016.
- [24] E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson. Operator splitting performance estimation: Tight contraction factors and optimal parameter selection

preprint arXiv:1812.00146, 2018.

[25] A. B. Taylor and F. Bach.

Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions

Conference on Learning Theory (COLT), 2019.

- [26] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance of first-order methods for composite convex optimization. SIAM Journal on Optimization, 27(3):1283-1313, 2017.
- [27] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order optimization methods. In IEEE 56th Annual Conference on Decision and Control (CDC), pages 1278-1283, 2017.

References V

- [28] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact worst-case performance of first-order methods. *Mathematical Programming*, 161(1-2):307-345, 2017.
- [29] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case convergence rates of the proximal gradient method for composite convex minimization. *Journal of Optimization Theory and Applications*, 178(2):455–476, 2018.
- [30] A. C. Wilson, B. Recht, and M. I. Jordan. A Lyapunov analysis of momentum methods in optimization. preprint arXiv:1611.02635, 2016.