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| Context: numerical (continuous) optimization

Minimize f : RY — R (e.g., with f continuous)

f(x,) = min f(x).
(x) 2 min £(x)

Ubiquitous in applied mathematics and computer science.

Numerous applications for modeling (physics, economics), estimation
(statistics, machine learning), decisions (control, operations research).
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Usually solved via iterative algorithm generating sequence xg, x1, ..., xp.

Slow, then fast?
Diverging?

Error”

“Time"

Fast, then stall?

What to expect from the output of the algorithm?

For instance: bounds on certain notions of “error”: f(xx) — f(x.), ||xk — x|, |V F(xk)]|, etc.
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Constructive approach to performance analysis
Towards structured analyses
Towards optimal algorithms

Concluding remarks
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| Example: analysis of a gradient method

Let f : R — R (continuously differentiable). Find x, € R9 such that
f *) = in f ’
() = min £(x)
with f is L-smooth and p-strongly convex (f € F,, ().

(Gradient method) We decide to use: xx11 = xx — aVf(xk)

Question: what a priori guarantees after N iterations?

Examples: what about f(xn) — f(x), [[VF(xn)|l. [Ixnv — x||?
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| About the assumptions
A differentiable function f : RY — R is u-strongly convex and L-smooth iff Vx, y € RY:

f

(1) (Convexity) f(x) = f(y) + (VF(y),x —y),
(1b) (u-strong convexity) (x) > f(y) + (Vf(y),x — y) + 4x — y|°,
(2) (L-smoothness) f(x) < f(y) + (VF(y),x —y) + 5[x — y|”,

(1&2) (VF(x) = Vi(y)ix —y) > gz IVF(x) = V)P + 5 x = yIP.
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| Convergence rate of a gradient step

for all

ﬁoy example: What is the smallest 7 such that:

lIx = xell? < 7llxo — x %,

o d €N, L-smooth and p-strongly convex function f (notation f € F, 1),

¢ xp, and x1 generated by gradient step x1 = xo0 — aVf(xp),

Ko X, = argmin f(x)?
X

bt = xell? = [lx0 = xu[2 = 20(VF(x0); 0 — x:) + A3V F(x0)

Inequallty 1&2)
) ” V1 (XO)H
L4-p

if0<a< 2
+p

<(1-25) o - x| +a(a
<(

1— ap)?|xo — x|




| Legitimate questions about performance analyses?

Legitimate questions (gradient descent, one iteration):
o anything improvable? Realistic analyses?

© How to choose the right inequalities to combine?

<

Why studying this specific quantity? Possible to adapt to other quantities?

<&

Unique way to arrive to the desired result?

o How likely are we to find such proofs in more complicated cases?
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/

;e I = x|
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| Convergence rate of a gradient step

ﬁoy example: What is the smallest 7 such that:
[ = xul? < 7llxo — x|,

for all
o d €N, L-smooth and p-strongly convex function f (notation f € F, 1),

¢ xp, and x1 generated by gradient step x1 = xo0 — aVf(xp),

Ko X, = argmin f(x)?
X

/

lx1 = x?
. = 2
Computing 77% foxoxexs ||Xo — X«l|
st. feF,L Functional class
Variables: f, xo, x1, Xx. x1 = x0 — aVf(xo) Algorithm
Parameters: u, L, a. . .
" Vf(xx) =0 Optimality of x,

1Original idea from [Drori and Teboulle, 2014]. Developments here from [T, Hendrickx, Glineur, 2017].
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| Sampled version

¢ Performance estimation problem (Variables: f, xo, x1, x):

2

[ = x|l
max TEE——
f X0, X1 ,Xx ||XO - X*||2

f is L-smooth and p-strongly convex,

subject to
Vf(x)=0.
< Sampled version:
2
max = xll”
X0, X1, X% el 2
o |lxo — x|l
fo,fx
. fi=f(x) i=0,%
subject to  3f € F,; such that { g =VF(x) i=0x*

X1 = Xo — @80

g = 0.



| Sampled version

¢ Performance estimation problem (Variables: f, xo, x1, x):

2

[ = x|l
max  TEEE—
f X0, X1 ,Xx ||XO - X*||2

f is L-smooth and p-strongly convex,

subject to
x1 = xo — aVf(xo)
Vi(x:)=0.
o Sampled version: (Variables: xg, x1, X«, 80, & fo. i)
2
el
X0, X1 X _ 2
%y o —xl
vaf*
. f; = f(X,‘) = 0./*
subject to  Jf € F,; such that { g = VF(x) i=0,x

X1 = Xo — @80

g, =0.
12
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PAN

>

X
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- Necessary and sufficient condition: Vi, j € /
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| Smooth strongly convex interpolation (or extension)

Let / index set, and associated {(x;, g, f;)};c;: points x;, (sub)gradients g; and function values f;.
f

PAN

>

X
7 Possible to find f € F,,; such that f(x;) = f;, and g = Vf(x;) Vi € I?
- Necessary and sufficient condition: Vi, j € /
i 6+ (gxi—x) + Zlle — g’ + gl — % — Hea - &)
- Simpler example: pick =0 and L = oo (just convexity):
fi = 1 + (g, xi — X))

13
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| Replace constraints

o Interpolation conditions allow removing red constraints

maXx
X0,X1,Xx
80,8+
0,f«

subject to

b — xI?

X0 = x«|?

3df € F, 1 such that { f"'

X1 = Xo — 080

g =0,

= f(x;)

Vi(x)

LLe

* ot

14



| Replace constraints
o Interpolation conditions allow removing red constraints

2
o = x|
s o= x|
Zo.8x X0 = X
0,7%

| fi= ,
subject to  3f € F,, | such that { gi=Vf(x) i=

X1 = Xo — 080

g =0,

o replacing them by
2 2
fo = fo+ (g0, X — X0) + 57 [l&« — &ol|” + A2 7D) % — %0 — 1(&« — &0)||

2 2
fo = fi + (8, X0 — X&) + 71L||g0 - gl + WHXO — X% — %(go _g*)H .
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| Replace constraints
o Interpolation conditions allow removing red constraints

b — xI?

max
e lo = x?
0,7
. fi = f(x) i=0,%
subject to  3f € F,, | such that { g = V() i=0x

X1 = Xo — 080

g =0,

o replacing them by
2 2
fo > fO + <g07X* - X0> + ;THg* - gOH + 2(1_'“/,,/[_) ||X* — X0 — %(g* - gO)H

2 2
fo = fi + (8, X0 — X&) + 71L||g0 - gl + WHXO — X% — %(go _g*)H .

< Same optimal value (no relaxation): non-convex quadratic problem.
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o Define P 2 [xp — X, go] € R¥*2 and F £ fy — f,.
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o Define P 2 [xp — X, go] € R¥*2 and F £ fy — f,.
¢ Using new variables G = 0 and F

o — |2

GE2PTP=
(805 X0 — X

<gOa X0 — X*>
[l goll?

=0,
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| Semidefinite lifting

o Define P 2 [xp — X, go] € R¥*2 and F £ fy — f,.

¢ Using new variables G = 0 and F

G2pPTp— HXO*X*H2 <go,X07X*> .0,

(80, X0 — X&) gl

o previous problem can be relaxed to 2 x 2 SDP

maXx
G, F

subject to

Gi1+ Gy — 206Gy o

F+2 Q1+%LMG ﬁ¢Q2<0
—F+ 5755 Gll+2(L G2 — 5,612 <0
G]_,]_—].

G0
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¢ Using new variables G = 0 and F
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| Semidefinite lifting
o Define P 2 [xp — X, go] € R¥*2 and F £ fy — f,.
¢ Using new variables G = 0 and F

G2pPTp— HXO*X*H2 <go,X0 *2X*> -0
(80, %0 — X4) ll&oll ’

o previous problem can be relaxed to 2 x 2 SDP

rr&aé G1,1 + a2 G272 — 20&6172

subject to F+2 G11—|—2(L u)G ﬁ@,zgo
- F+ 5755 Gll+2(L G2 — 5,612 <0
G]_,]_:].
G0

(using homogeneity argument and substituting x; and gy).

o Assuming xg, X, 80 € R? with d > 2, same optimal value as original problem!
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| Semidefinite lifting
o Define P 2 [xp — X, go] € R¥*2 and F £ fy — f,.
¢ Using new variables G = 0 and F

G2pPTp— HXO*X*H2 <go,X0 *2X*> -0
(80, %0 — X4) ll&oll ’

o previous problem can be relaxed to 2 x 2 SDP

rr&aé G1,1 + a2 G272 — 2046172

subject to F+2 G11—|—2(L u)G ﬁ@,zéo
- F+ 5755 Gll+2(L G2 — 5,612 <0
G]_,]_:].
G0

(using homogeneity argument and substituting x; and gy).
o Assuming xg, X, 80 € R? with d > 2, same optimal value as original problem!

o For d =1 same as original problem by adding rank(G) < 1.
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| Numerical solution of the SDP
Fix L =1, u = .1 and solve the SDP for a few values of .

4

3, ]

HXI*X*HZ 2
lIx0—x1[?

step-size «

Observations:

o numerics match the known max{(1 — aL)?, (1 — au)?}

o recovers that gradient descent converges for o € (0,2/L) (divergence otherwise).
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o Dual problem is

min
;1,420
14+ Aalp a— (Ltp)
subject to S = (Llf;f)L 2(L7‘;)
R T( ) —u @

0=/ —

o Weak duality: any dual feasible point = valid worst-case convergence rate
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o Dual problem is

min
,A220
14 2abe o 2a(lhp)
subject to S = |: (Llf;f)t 2(L7‘;) =0
R T( ) —u @

0=/ —

o Weak duality: any dual feasible point = valid worst-case convergence rate

o Direct consequence: for any 7 > 0 we have

Ix1 — x«||% < 7||x0 — x«||? for all f € Fu,all xo € RY, all d € N, with x1 = xp — aVf(xp).
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o Strong duality holds (3 Slater point): any valid worst-case convergence rate = valid dual feasible point ({}).
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| Dual problem

o Dual problem is

min
,A220
14+ Aalp a— (L+p)
subject to S = |: (Llf;f)t 2(L7‘;) =0
R T( ) —u @
0=y —

¢ Weak duality: any dual feasible point = valid worst-case convergence rate (1}).

o Direct consequence: for any 7 > 0 we have

Ix1 — x«||% < 7||x0 — x«||? for all f € Fu,all xo € RY, all d € N, with x1 = xp — aVf(xp).

Tl
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(Ltu)
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o Strong duality holds (3 Slater point): any valid worst-case convergence rate = valid dual feasible point ({}).
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| Dual solutions

Fix L =1, p = .1 and solve the dual SDP for a few values of a.
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Fix L =1, p = .1 and solve the dual SDP for a few values of a.
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| Dual solutions

Fix L =1, p = .1 and solve the dual SDP for a few values of a.

- 10| 1 ___

g 5} s

3

©

>

©

3

o) 0 | |

-1 0 1 2 3
Step size «

Numerics match A\ = Ao = 2|ap(a) with p(a) = max{al — 1,1 — au}.
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| Recovering a “standard” proof

Gradient with o = % Perform weighted sum of two inequalities
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| Recovering a “standard” proof

Gradient with o = %. Perform weighted sum of two inequalities
I g

2
fo > f*+i||Vf(xo)||2+m‘|xo—x*— %Vf(xo)H = 2a(l — ap)
fo 2 fo+ (VFf(x0), %« fxo>+i\|Vf(Xo)||2+ﬁ||xofx* = —Vf(xo)H D o=20(1 — ap)
with A1, 2> > 0. Weighted sum can be reformulated as

(L
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| Recovering a “standard” proof

Gradient with o = %. Perform weighted sum of two inequalities
I g

2
fo > f + 2| VF(x0)|* + satarn o —xe = 1Vf(xo)|

2
fo > fo + (VF(x0), x« — x0) + 2 [IVF(x0)[I* + ﬁnxo — X — FVF(x0)||
with A1, 2> > 0. Weighted sum can be reformulated as

(L
e = xe|? < (1= an)? [Ixo0 — xu|* = aull#(m —x:) = V(o)

=20(1 — ap)

=20(1 — aup)

>0, or = 0 when worst-case is achieved

<(L—au)?xo0 — x|1%,

leading to [|x1 — xx||? < (1 — ap)? ||xo — x«||? (tight).
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| What did we do, so far?

Summary:
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| What did we do, so far?

Summary:

o we computed the smallest 7(u, L, ) such that
I = x.l|? < 7k, L @) 130 — x.|?

is satisfied for all xp € RY, d € N, f € F,,, and x; = xo — aVf(x).
o Feasible points to primal SDP correspond to lower bounds on 7(u, L, &).
o Feasible points to dual SDP correspond to upper bounds on 7(u, L, «).

— proof via linear combinations of interpolation inequalities (evaluated at {xx}« and x,),
— proofs can be rewritten as a “sum-of-squares” certificates (sum of squared norms).
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| When does it work?

The methodology applies, as is, as soon as:
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| When does it work?

The methodology applies, as is, as soon as:
o performance measure and initial condition are linear in G and F,
¢ interpolation inequalities are linear in G and F,

¢ algorithm can be described linearly in G and F,

(but other cases are not doomed).
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| Software: PEPit/PESTO ;

# PEPit

Welcome to PEPit’s documentation!

What's new in PEPit

Contributi

A
s

# / Welcome to PEPit's documentation! View page source

Welcome to PEPit's documentation!

Contents:

« Welcome to PEPit's documentation!
« Quick start guide

« APl and modules

« Examples

« What's new in PEPit

« Contributing

PEPit: Performance Estimation in Python

This open source Python library provides a generic way to use PEP framework in Python.
Performance estimation problems were introduced in 2014 by Yoel Drori and Marc Teboulle, see
[1]. PEPt is mainly based on the formalism and developments from [2, 3] by a subset of the authors
of this toolbox. A friendly informal introduction to this formalism is available in this blog post and a
corresponding Matlab library is presented in [4] (PESTO).

Website and documentation of PEPit: https://pepit.r

hedocs.io/

Source Code (MIT): https:/github.com/ PerformanceEstimation/PEPit

Using and citing the toolbox

This code comes jointly with the following

B. Goujaud, C. Moucer, F. Glineur, J. Hendrickx, A. Taylor, A. Dieuleveut (2022

22


file:///home/ataylor/Github/PEPit_Tests/PEPit_Oct2024/PEPit/docs/build/html/examples.html

| Example 1: gradient methods and momentum

in
min, £(x),

with f an L-smooth convex function.
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| Example 1: gradient methods and momentum

min f(x

min, £(x),

with f an L-smooth convex function. Three algorithms:
o Gradient descent: xiq1 = xk — 1V (xk).

o Heavy-ball method [Polyak, 1964] xx+1 = xx — aVf(xk) + B(xk — xk—1)
(choice: o = i B =+/1— La, see [Ghadimi, Feyzmahdavian, Johansson, 2015])

o Accelerated gradient method [Nesterov, 1983]:

Xkp1 = Yk — 1 VF(xc)

k-1
Y1 = Xk+1 + 557 (k1 — X).-
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| Example 1: gradient methods and momentum

min f(x

min, £(x),

with f an L-smooth convex function. Three algorithms:
o Gradient descent: xiq1 = xk — 1V (xk).

o Heavy-ball method [Polyak, 1964] xx+1 = xx — aVf(xk) + B(xk — xk—1)
(choice: o = i B =+/1— La, see [Ghadimi, Feyzmahdavian, Johansson, 2015])

o Accelerated gradient method [Nesterov, 1983]:
Xk+1 = Yk — %Vf(xk)
Vi1 = Xa1 + 47 (X1 — Xi)-
What can we guarantee on...

i 2
o —xl? =7 fxo—xl? T 10 — x|
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| Example 2: a primal-dual proximal point
Minimize sum of two convex (ccp) functions

X.rg@ f(x) + h(x)

assume 3x;, y, (KKT point): —y, € 0f(x:), x« € Oh*(yy).

24



| Example 2: a primal-dual proximal point
Minimize sum of two convex (ccp) functions

X.megR[L f(x) + h(x)

assume 3x,, y, (KKT point): —y, € 0f(x.), X« € Oh*(yx).

Primal-dual proximal point algorithm (see, e.g., [Rockafellar, 1976])
Input: f, h convex (ccp) functions, (yo,x0) € R? x RY.
For k=0,1,...

(Vi1 Xes1) =argmax argmin{ £(x) = b*(y) + (¥, x)
y€ERd x€R?
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| Example 2: a primal-dual proximal point
Minimize sum of two convex (ccp) functions

X.megR[L f(x) + h(x)

assume 3x,, y, (KKT point): —y, € 0f(x.), X« € Oh*(yx).

Primal-dual proximal point algorithm (see, e.g., [Rockafellar, 1976])
Input: f, h convex (ccp) functions, (yo,x0) € R? x RY.
For k=0,1,...

(Vi1 Xes1) =argmax argmin{ £(x) = b*(y) + (¥, x)
y€ERd x€R?

2 2
+ gl = e lly el '}

What guarantees of type (for some elements of df and Oh*)

10F (xv) + ywll* + llxn — Oh* (yw) 12
X0 = %12+ llyo = y«ll?

< 7(N,«)?
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| Recap’
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| Recap’

® 0 60 60 6 6 6

Worst-case guarantees cannot be improved, systematic approach,

allows reaching analyses that could barely be obtained by hand,

fair amount of scenarios/algorithms (e.g., stochastic, distributed, error feedback, etc.),
SDPs typically become prohibitively large in a variety of scenarios,

transient behavior VS. asymptotic behavior: might be hard to distinguish with small N,
proofs (may be) quite involved and hard to intuit,

proofs (may be) hard to generalize.
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| A few instructive examples

Worst-case analysis for fixed-point iterations:
o Lieder (2021). “On the convergence of the Halpern-iteration”. Optimization letters 15(2).
Analysis of the proximal-point algorithm for monotone inclusions:

¢ Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the proximal point algorithm for maximal
monotone inclusion problems”. SIAM Journal on Optimization 30(3).

Application to nonconvex optimization:

¢ Abbaszadehpeivasti, de Klerk, Zamani (2022). “The exact worst-case convergence rate of the gradient method
with fixed step lengths for L-smooth functions”. Optimization Letters 16(6).

Applications to distributed optimization:

¢ Sundararajan, Van Scoy, Lessard (2020). “Analysis and design of first-order distributed optimization algorithms
over time-varying graphs.” IEEE Transactions on Control of Network Systems 7(4).

o Colla, Hendrickx (2023). “Automatic performance estimation for decentralized optimization.” IEEE Transactions
on Automatic Control 68(12).

Gradient descent for smooth convex minimization (definitive answers):

© Teboulle, Vaisbourd (2023). “An elementary approach to tight worst case complexity analysis of gradient based
methods.” Mathematical Programming 201(1).
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| A few references
Historical reference:
o Drori, Teboulle (2014). “Performance of first-order methods for smooth convex
minimization: a novel approach.” Mathematical Programming 145 (1).
Main messages of this part:
o T, Hendrickx, Glineur (2017). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods.” Mathematical Programming 161.

o Goujaud, Dieuleveut, T (2023). “On fundamental proof structures in first-order
optimization.” Conference on Decision and Control (CDC).

o Goujaud, Moucer, Glineur, Hendrickx, T, Dieuleveut (2024). “PEPit: computer-assisted
worst-case analyses of first-order optimization methods in Python.” Mathematical
Programming Computation 16(3).

£ ARRE
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minimization: a novel approach.” Mathematical Programming 145 (1).
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T, Hendrickx, Glineur (2017). “Smooth strongly convex interpolation and exact
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Goujaud, Dieuleveut, T (2023). “On fundamental proof structures in first-order
optimization.” Conference on Decision and Control (CDC).

Goujaud, Moucer, Glineur, Hendrickx, T, Dieuleveut (2024). “PEPit: computer-assisted
worst-case analyses of first-order optimization methods in Python.” Mathematical
Programming Computation 16(3).

To go further:

<

T, Hendrickx, Glineur (2017). “Exact worst-case performance of first-order methods for
composite convex optimization.” SIAM Journal on Optimization 27(3).

Dragomir, T, d'Aspremont, Bolte (2022). “Optimal complexity and certification of
Bregman first-order methods.” Mathematical Programming 194.

Barré, T, Bach (2023). “Principled analyses and design of first-order methods with
inexact proximal operators.” Mathematical Programming 201(1).
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| Structured performance analyses

So far: we searched for iteration-dependent analyses.
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| Structured performance analyses

So far: we searched for iteration-dependent analyses.
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N 1073 :
N Wi Accelerated gradient A . —--- Accelerated gradient
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What to expect
for larger N7



| What is a Lyapunov function??:3:4

Dynamical system: &1 = F(&k) with fixed point &, = F(&,).

2See, e.g., [Lyapunov and Fuller, 1992]; original text in Russian [Lyapunov, 1892]. Many possible variations around our definition.
3See, e.g., [Bansal and Gupta, 2019] or [Wilson, Recht, Jordan, 2021] in the context of first-order optimization.
aMany traditional analyses follow such patterns, see, e.g. [Polyak, 1964], [Nesterov, 1983].
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( Lyapunov function: )
o V(&) =20V,
o V() =0eE=¢,
o u(l€ &) < V(€) (for some increasing v(-)),

| @ V(k+1) < pV(§k) (for some p < 1) )

Why nice? Pick for instance v(||¢ — &) = [|€ — &2

2See, e.g., [Lyapunov and Fuller, 1992]; original text in Russian [Lyapunov, 1892]. Many possible variations around our definition.
3See, e.g., [Bansal and Gupta, 2019] or [Wilson, Recht, Jordan, 2021] in the context of first-order optimization.
4Many traditional analyses follow such patterns, see, e.g. [Polyak, 1964], [Nesterov, 1983].
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o v([|€ = &l) < V(&) (for some increasing v(+)),
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Why nice? Pick for instance v(||¢€ — &) = [|€ — &I

1én — &7 < V(Ew) < pV(En-1) < ... < p"V(&).

2See, e.g., [Lyapunov and Fuller, 1992]; original text in Russian [Lyapunov, 1892]. Many possible variations around our definition.
3See, e.g., [Bansal and Gupta, 2019] or [Wilson, Recht, Jordan, 2021] in the context of first-order optimization.
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| Lyapunov functions for gradient descent

Gradient descent: xx41 = xk — aVf(xx). Reasonable to choose

&k =[xk — %o, VI(xk), f(xx) — f(x:)] and &, =[0,0,0]
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| Lyapunov functions for gradient descent

Gradient descent: xx+1 = xx — aVf(xk). Reasonable to choose
&k =[xk — %o, VI(xk), f(xx) — f(x:)] and &, =[0,0,0]

with

vied = (505) et (3705) +p )~ (5.
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| Lyapunov functions for gradient descent

Gradient descent: xx+1 = xx — aVf(xk). Reasonable to choose
Ek =[x — xi, VE(xi), f(x) — f(x.)] and & = [0,0, 0]
with

vied = (575) en (5705) +p w1

In other words:

V(fk) :P1,1||Xk — X,(H2 + 2P172<Vf(Xk); Xk — X*> + P272Hv7c(Xk)H2 + p(f(Xk) — f(X*))
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| Lyapunov functions for gradient descent

Gradient descent: xx+1 = xx — aVf(xk). Reasonable to choose
Ek =[x — xi, VE(xi), f(x) — f(x.)] and & = [0,0, 0]
with
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In other words:

V(fk) :P1,1||Xk — X,(H2 + 2P172<Vf(Xk); Xk — X*> + P272HVf(Xk)H2 + P(f(Xk) — f(X*))

Goal: characterize the set of (P, p) € S? x R:
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V(fk) :P1,1||Xk — X,(H2 + 2P172<Vf(Xk); Xk — X*> + P272HVf(Xk)H2 + P(f(Xk) — f(X*))

Goal: characterize the set of (P, p) € S? x R:
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| Verifying a Lyapunov function
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| Verifying a Lyapunov function

Goal: characterize the set of (P, p) € S? x R:
o for which V(&) > ||x — x.||? for all d € N, € € (RY)? x (R)?, f € F,,1, and
o for which V/(&41) < pV/(&) for all d € N, & € (RY)? x (R)?, f € F,, 1, compatible &y1.
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| Verifying a Lyapunov function

Goal: characterize the set of (P, p) € S? x R:
o for which V(&) > ||x — x.||? for all d € N, € € (RY)? x (R)?, f € F,,1, and
o for which V/(&41) < pV/(&) for all d € N, & € (RY)? x (R)?, f € F,, 1, compatible &y1.

Verify first property
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| Verifying a Lyapunov function

Goal: characterize the set of (P, p) € S? x R:
o for which V(&) > ||x — x.||? for all d € N, € € (RY)? x (R)?, f € F,,1, and

o for which V/(&41) < pV/(&) for all d € N, & € (RY)? x (R)?, f € F,, 1, compatible &y1.

Verify first property < Ve > 0:

e< inf_ V([x—x, VF(x),f(x) = f(x)])

dEN,IfE}-M,L
X7X*€Rd
st ||x — x|]2 > e,

Vi(x) =0,
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| Verifying a Lyapunov function

Goal: characterize the set of (P, p) € S? x R:
o for which V(&) > ||x — x.||? for all d € N, € € (RY)? x (R)?, f € F,,1, and

o for which V/(&41) < pV/(&) for all d € N, & € (RY)? x (R)?, f € F,, 1, compatible &y1.

Verify first property < Ve > 0:

e< inf_ V([x—x, VF(x),f(x) = f(x)])

dEN,IfE}-M,L
X7X*€Rd
st ||x — x|]2 > e,

Vi(x) =0,

...optimization on space f € F, ;. Optimization variables: d, f, x, x,.
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| Verifying a Lyapunov function

Goal: characterize the set of (P, p) € S? x R:
o for which V(&) > ||x — x.||? for all d € N, € € (RY)? x (R)?, f € F,,1, and

o for which V/(&41) < pV/(&) for all d € N, & € (RY)? x (R)?, f € F,, 1, compatible &y1.

Verify first property < Ve > 0:

e< inf_ V([x—x, VF(x),f(x) = f(x)])

dEN,IfE}_M,L
X7X*€Rd
st ||x — x|]2 > e,

Vi(x) =0,
...optimization on space f € F, ;. Optimization variables: d, f, x, x,.

= both conditions can be reframed as LMIs (bonus: linear in (P, p) € S? x R).
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| Examples: vanilla first-order methods M

Method o B i
Xk = Yk + vk — Yk—1)
Yir1 = Yk + Bk — Ye—1) — aVF(xx)
“Lyapunov rates" “Lyapunov rates” with P =0, p > 0
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| Examples: vanilla first-order methods

Method
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| Examples: vanilla first-order methods

xk = vk + vk — Yk—1)
Vi1 = Y + By — Yi—1) — aVF(x)

Convergence rate p

“Lyapunov rates"
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| Primal-Dual Hybrid Gradient (PDHG)* m

in f h
min (x) + h(x),

with £, h convex (closed, proper) functions and prox;, prox, simple to evaluate.

Xk+1 = ProX ¢ (Xk — Tyk),

Vi1 = ProXgpe (Vi + 0 (Xep1 + 0 (X1 — X)) -

4See [Chambolle and Pock, 2011].

34


https://github.com/ManuUpadhyaya/TightLyapunovAnalysis

| Primal-Dual Hybrid Gradient (PDHG)*

in f h
min, £(x) + h(x),

with f, h convex (closed, proper) functions and prox;, prox, simple to evaluate.

8

X1 = ProX, ¢ (Xk — TYk)

Yier1 = ProXgpe (Vi + 0 (X1 + 0 (X1 — Xi))) - 2

4See [Chambolle and Pock, 2011].
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| Primal-Dual Hybrid Gradient (PDHG)*

in f h
min, £(x) + h(x),

with f, h convex (closed, proper) functions and prox;, prox, simple to evaluate.

Classical convergence
region®

> 4
Xk+1 = ProX, ¢ (Xk — Tyx)
Vi1 = ProXgpe (Vi + 0 (Xep1 + 0 (X1 — X)) - 2
0
0.5 1 1.5

4See [Chambolle and Pock, 2011].
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| Primal-Dual Hybrid Gradient (PDHG)*

in f h
min, £(x) + h(x),

with f, h convex (closed, proper) functions and prox;, prox, simple to evaluate.

8

Classical convergence
region®

Improved convergence
region®:6

X1 = ProX, ¢ (Xk — TYk)

Yier1 = ProXpe (Vi + 0 (X1 + 0 (1 — X)) - 2

4See [Chambolle and Pock, 2011].
5Code available here: https://github.com/ManuUpadhyaya/TightLyapunovAnalysis.
SImproved region partially described (closed-forms) in [Banert, Upadhyaya, Giselsson, 2023]. 34
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| Cycles

Heavy-ball
X1 = Xk — aV I (xk) + B(xk — Xk—1)-

Pick specific («, 8) and fix cycle length K.

26
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| Cycles ﬁ‘Jﬂ

Heavy-ball
Xp41 = Xk — aV T (x) + B(xk — xk—1)-

Pick specific («, 8) and fix cycle length K.
Look for non-trivial cycles of length K € N by solving:

min[xic — 0|2+ xicr —
X053 XK+1
st. feFuL Functional class
Xkr1 = Xk — aVF(xk) + B(xk — Xk—1) Algorithm

% —x|I? =1 Non-trivial cycle



| Cycles £‘Jﬁ

Heavy-ball
Xp41 = Xk — aV T (x) + B(xk — xk—1)-

Pick specific («, 8) and fix cycle length K.
Look for non-trivial cycles of length K € N by solving:

min [ — ol + xicer = P

X0ree XKt
st. feFuL Functional class
X1 = Xk — VI (xk) + B(xk — xk—1) Algorithm

l[xo — xu||* > 1 Non-trivial cycle

From same steps as before — SDP formulation — LP (via convexity and symmetries).
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| Heavy-ball method: Lyapunov vs. cycles

Heavy-ball: xx.1 = xx — aVf(xk) + B(xk — xk—1). Choices of («, 3) for convergence??:8:°

7Classical region from [Ghadimi, Feyzmahdavian, Johansson, 2015]
8Known 3-cycle for optimal quadratic tuning of HB when used beyond quadratics [Lessard, Recht, Packard, 2016].

9Goujaud, T, Dieuleveut (2023). “Provable non-accelerations of the heavy-ball method.” Preprint.
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| Heavy-ball method: Lyapunov vs. cycles

Heavy-ball: xx.1 = xx — aVf(xk) + B(xk — xk—1). Choices of («, 3) for convergence??:8:°
1

0.8

0.6
el

0.4

0.2

0
N %
QQO') \9.3 Q/qf') (5‘5‘6

o

7Classical region from [Ghadimi, Feyzmahdavian, Johansson, 2015]

8Known 3-cycle for optimal quadratic tuning of HB when used beyond quadratics [Lessard, Recht, Packard, 2016].
2Goujaud, T, Dieuleveut (2023). “Provable non-accelerations of the heavy-ball method.” Preprint. 36



| Heavy-ball method: Lyapunov vs. cycles &

27.,8,9

Heavy-ball: xx11 = xx — aVF(xk) + B(xk — xk—1). Choices of («a, ) for convergence
1
0.8
0.6
Ko}
0.4

0.2

0

[0}

7Classical region from [Ghadimi, Feyzmahdavian, Johansson, 2015]
8Known 3-cycle for optimal quadratic tuning of HB when used beyond quadratics [Lessard, Recht, Packard, 2016].
2Goujaud, T, Dieuleveut (2023). “Provable non-accelerations of the heavy-ball method.” Preprint.
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| Heavy-ball method: Lyapunov vs. cycles &

Heavy-ball: xx.1 = xx — aVf(xk) + B(xk — xk—1). Choices of («, 3) for convergence??:8:°
1
0.8
0.6 “Optimal tuning” for quadratic optimization®
= (numerics for L/p = 107)
0.4
0.2

0
Q N (251 ™

[0}

7Classical region from [Ghadimi, Feyzmahdavian, Johansson, 2015]
8Known 3-cycle for optimal quadratic tuning of HB when used beyond quadratics [Lessard, Recht, Packard, 2016].
2Goujaud, T, Dieuleveut (2023). “Provable non-accelerations of the heavy-ball method.” Preprint.



| Recap’
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| Recap’

Smaller-dimensional certification problems.

Broader sets of scenarios within reach.

Simpler analysis structures, more likely to be human-readable.

Tightness is lost (“best certification with quadratic Lyapunov functions”, instead).

Proofs (may be) involved and hard to intuit.

® 0 60 6 6 6

Proofs (may be) hard to generalize.
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Towards optimal algorithms
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| Creating new algorithms

A “generic” first-order method
wy = wp — a0V T (wo)
wa = wy — anoVF(wy) — ap1VF(wy)
w3 = ws — a3 oVI(wp) — a3 1VFi(wi) — a3z 2 VF(ws)
(FOM)

N—-1

Wy = Wy_1 — Z an,;iVE(w),

i=0
for some coefficients {«; ;j}. Generic non-adaptive first-order method.
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| Creating new algorithms

A “generic” first-order method
wy = wp — a0V T (wo)
wa = wy — anoVF(wy) — ap1VF(wy)
w3 = ws — a3 oVI(wp) — a3 1VFi(wi) — a3z 2 VF(ws)
(FOM)

N—1
wy =wyo1— Y anVi(w),
i=0
for some coefficients {«; ;j}. Generic non-adaptive first-order method.

How to choose {a;;}?

_ 2
¢ pick a performance criterion, for instance 7|‘||"MV/Q’_::VV*“||2 ,
*

_ 2
¢ solve the minimax (minimize worst-case): min  max %
faijtiy feF {wip 1o

40



| Design problem

How to solve the design problem (or proxy of it)?

-,
min max -————— -
{ai} FEF |lwo — wi|

41



| Design problem

How to solve the design problem (or proxy of it)?

- 2 f —f
min max lwy — w. | ?7  min max (wn) (W*)'?

{aiy fer |lwo — wil|?2 ™ faiy} feF fwg) — F(wy)

41



| Design problem

How to solve the design problem (or proxy of it)?

f(wy) — f(ws)

lw — we|?

min max ?7  min max

2

{aiy fer |lwo — wil|?2 ™ faiy} feF fwg) — F(wy)

i I ()2
{ai} feF ||V F(wo)l|?
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How to solve the design problem (or proxy of it)?

f(wn) — F(wy)

lw — we|?

min max ?7  min max

2

{aiy fer |lwo — wil|?2 ™ faiy} feF fwg) — F(wy)

o Convex relaxations,

i I ()2
{ai} feF ||V F(wo)l|?
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| Design problem

How to solve the design problem (or proxy of it)?

- ’ f —f f 2
min max lwy = w. | 7 min max (wv) (W*)? min maxM?

{aijy feF |lwo — wil|? " faij} feF fwg) — F(wy) {aisy feF ||[VF(wo)||?

o Convex relaxations,

© analogies (e.g., with conjugate gradient methods)

Wit1 € argmin {f(w): w € wy + span{Vf(wp),..., VF(wi)}},
x€eRI
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| Design problem

How to solve the design problem (or proxy of it)?

- ’ f —f f 2
min max lwy = w. | 7 min max (wv) (W*)? min maxM?

{aijy feF |lwo — wil|? " faij} feF fwg) — F(wy) {aisy feF ||[VF(wo)||?

o Convex relaxations,

© analogies (e.g., with conjugate gradient methods)

Wit1 € argmin {f(w): w € wy + span{Vf(wp),..., VF(wi)}},
x€eRI

& brutal approaches.
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| Numerical example |

f —f,
Worst-case performance I (wiy) =

[wo —w. [|2

with L =1 and p = .01. We compare
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| Numerical example |

fwy)—fs
[lwo —wy (|2

o worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast
Gradient Method (FGM) computed using PEPs,

Worst-case performance with L =1 and p = .01. We compare
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[lwo —wy (|2

o worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast
Gradient Method (FGM) computed using PEPs,
© worst-case performance of optimized method, conjugate gradient-based method (both numerically generated),

Worst-case performance with L =1 and p = .01. We compare
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| Numerical example |
% with L =1 and p = .01. We compare

worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast
Gradient Method (FGM) computed using PEPs,

worst-case performance of optimized method, conjugate gradient-based method (both numerically generated),
o Lower complexity bound (numerically generated).

Worst-case performance
o

<



| Numerical example |

Worst-case performance % with L =1 and p = .01. We compare

© worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast
Gradient Method (FGM) computed using PEPs,

© worst-case performance of optimized method, conjugate gradient-based method (both numerically generated),

© (numerically generated).
ol | —Tmm
[
X
10-7 ! ! ! !

0 10 20 30 40 50

Iteration N
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| Numerical example |

Worst-case performance % with L =1 and p = .01. We compare

© worst-case performance of known methods, namely Triple Momentum Method (TMM) and Accelerated/Fast
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| Example II: Information-Theoretic Exact Method (ITEM)

2
Optimal method for 20—z \‘\‘2 is “Information-Theoretic Exact Method":10

llzy —2z«
T4k

10T, Drori (2023). “An optimal gradient method for smooth strongly convex minimization.” Mathematical Programming 199(1).
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1
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1
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| Example II: Information-Theoretic Exact Method (ITEM)

2
Optimal method for 20—z \‘\‘2 is “Information-Theoretic Exact Method":

Iy — 2 .10
T L%

1
vie = (1= Br)zx + B« (yk_l - va(yk_l))
1
Zir1 = (1= B8)z+ 45 (yk - ;wm)),

where the sequences {3} and {dx} depends on some external sequence

O par2(ief0rag0rEad) o

- T

Ak+1 =

N

. _ . o lzn—ze? L —o((1- \/g)z’v 11
with Ag = 0. The (tight) guarantee is To—=l? S TrEay = o ( 1 T . Matches exact lower bound.

10T, Drori (2023). “An optimal gradient method for smooth strongly convex minimization.” Mathematical Programming 199(1).

1Drori, T (2022). “On the oracle complexity of smooth strongly convex minimization.” Journal of Complexity 68.
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| Example Il: Projection-free online learning

12E|ad Hazan (2016). “Introduction to Online Convex Optimization.” Foundations and Trends in Optimization.

13\Weibel, Gaillard, Koolen, T (2025). “Optimized projection-free algorithms for onlinelearning: construction and worst-case analysis.”
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| Example Il: Projection-free online learning

Online Frank—Wolfe algorithm?!2-13

Input: closed convex set IC, initial guess x; € K, sequence of costs {1, /2, .. ..

Fort=1,2,...
Play x¢, pay cost £¢(x:), and observe gr = V{¢(x¢).

t t—1
diry = Znt,s 8s + Z Bt,s (Vs - Xl)
s=1 s=1

v¢ = argmin (dir, v)
ver
t
Xey1 = X1+ 3 Yeras (vs — x1),
s=1

Target: good regret bounds — optimize (minimize) worst-case by appropriate choices 1: s, Bt,s, Vt,s-

-
RT(X1, .y XT3 Xx) S % Z {Kt(xt) — Kt(x*)} < = sup { th(xt) — th(x }
t=1

12E|ad Hazan (2016). “Introduction to Online Convex Optimization.” Foundations and Trends in Optimization.

13\Weibel, Gaillard, Koolen, T (2025). “Optimized projection-free algorithms for onlinelearning: construction and worst-case analysis.”
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| Numerically optimized online Frank-Wolfe

Worst-case regret

S
o
|

20

Time horizon T

—— Bound from [Hazan 2016, Algo. 27]

- =~ Tight bound for [Hazan 2016, Algo. 27]
—— Theory bound for new algo.

- =~ Tight bound for new algo.

- o~ Tight bound for optimized algo.

40
@Ogo
,oﬁof
20 - 095as®
T T T
60 80 100

Time horizon T

- ©- Optimized algo., r = 1 linearization round
- 2- Optimized algo., r = 2 linearization rounds
- £1- Optimized algo., r = 3 linearization rounds
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| Numerically optimized online Frank-Wolfe

Worst-case regret

40

20 %o

Time horizon T

- %~ Optimized algo. with ;s =10
- o- Optimized algo.

4+
40 | ST gE
3% x
13| *
4/;;’ E)(Xx‘
v = )(Xx
iV ot g
20 '-(E‘xxx
* [ x

Time horizon T

- =~ [Hazan 2016, Algo. 27]
- +- Anytime [Hazan 2016, Algo. 27]
- 8- Anytime new algo.
- =~ New algo.
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| A few instructive examples

Design first-order methods via PEPs:

<

Drori, Teboulle (2014). “Performance of first-order methods for smooth convex minimization: a novel
approach.” Mathematical Programming 145(1).

¢ Kim, Fessler (2016). “Optimized methods for smooth convex optimization.” Mathematical programming 159.
¢ Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent first-order method for minimizing

strongly convex functions.” IEEE Control Systems Magazine 39(3).

Kim, Fessler (2021). “Optimizing the efficiency of first-order methods for decreasing the gradient of smooth
convex functions.” Journal of Optimization Theory and Applications 188(1).

Altschuler, Parrilo (2023). “Acceleration by Stepsize Hedging |: Multi-Step Descent and the Silver Stepsize
Schedule.” Preprint.
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convex functions.” Journal of Optimization Theory and Applications 188(1).

o Altschuler, Parrilo (2023). “Acceleration by Stepsize Hedging |: Multi-Step Descent and the Silver Stepsize
Schedule.” Preprint.

. including “brutal” examples:
o Grimmer (2024). “Provably faster gradient descent via long steps.” SIAM Journal on Optimization 34(3).

o Gupta, Van Parijs, Ryu (2024). “Branch-and-Bound Performance Estimation Programming: A Unified
Methodology for Constructing Optimal Methods.” Mathematical Programming 204(1).
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| Concluding remarks

Performance estimation’s philosophy

¢ numerically allows obtaining tight bounds (rigorous baselines),

— fast prototyping
— worth checking before trying to prove a method works.

o algebraic insights into performance analyses: principled approach,
— analyses are dual feasible points,

— analyses are linear combinations of certain specific inequalities.
Byproducts:
© computer-assisted design of analyses,
© computer-assisted design of numerical methods,
© step towards reproducible theory

— validation & benchmark tool for proofs (also for reviews ©),
— complements existing open-source initiatives.
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| Take-home messages

Optimization can be seen as the science of proving inequalities

...including complexity bounds for numerical methods.

Powerful framework for designing methods and guarantees.
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Thanks! Questions?

PERFORMANCEESTIMATION / PERFORMANCE-EsTIMATION-TOOLBOX on GITHUB

PerrorMANCEEsTIMATION/PEPIT on GITHUB
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